Browse > Article
http://dx.doi.org/10.4191/KCERS.2005.42.10.665

Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs  

Kim, Kwang-Nyeon (Materials Division, Korea Institute f Science and Technology, School of Advanced Materials Engineering, Yonsei University)
Moon, Jooho (School of Advanced Materials Engineering, Yonsei University)
Kim, Hyoungchul (Materials Division, Korea Institute of Science and Technology)
Son, Ji-Won (Materials Division, Korea Institute of Science and Technology)
Kim, Joosun (Materials Division, Korea Institute of Science and Technology)
Lee, Hae-Weon (Materials Division, Korea Institute of Science and Technology)
Lee, Jong-Ho (Materials Division, Korea Institute of Science and Technology)
Kim, Byung-Kook (Materials Division, Korea Institute of Science and Technology)
Publication Information
Abstract
LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.
Keywords
SOFC; LSGM; Interfacial reaction; Open cell voltage; Ohmic resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Hrovat, A. Ahmad-Khanlou, Z. Samardzija, and J. Hole, 'Interactions between Lanthanum Gallate Based Solid Electrolyte and Ceria,' Mater. Res. Bull., 34 2027-34 (1999)   DOI   ScienceOn
2 N. Maffei and G. de Silveira, 'Interfacial Layers in Tape Cast Anode-Supported Doped Lanthanum Gallate SOFC Elements,' Solid State Jonics, 159 209-16 (2003)   DOI   ScienceOn
3 A. Naoumidis, A. Ahmad-Khanlou, Z. Samardzija, and D. Kolar, 'Chemical Interaction and Diffusion on Interface Cathode/Electrolyte of SOFC,' J. Anal. Chem., 365 277-81 (1999)   DOI
4 K. Huang, J. H. Wan, and J. B. Goodenough, 'Increasing Power Density of LSGM-Based Solid Oxide Fuel Cell Using New Anode Materials,' J. Electro. Soc., 148 [7] 788-94 (2001)   DOI   ScienceOn
5 F. W. Poulsen and N. van der Puil, 'Phase Relations and Conductivity of Sr- and La-Zirconates ' Solid State Ionics 53-56 777-83 (1992)   DOI   ScienceOn
6 T. Ishihara, H. Matsuda, and Y. Takita, 'Effects of Rare Earth Cations Doped for La Site on the Oxide Ionic Conductivity of $LaGaO_3$-Based Perovskite Type Oxide,' Solid State Ionics, 79 147-51 (1995)   DOI   ScienceOn
7 K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, and M. Dokiya, 'Some Characteristics for Fabrication of $LaGaO_3$-Based Electrolyte,' Proceeding of the Fifth International Symposium on Solid-Oxide Fuel Cells, 1041-50 (1997)
8 K. N. Kim, J. H. Moon, J. W. Son, J. S. Kim, H. W. Lee, J. H. Lee, and B. K. Kim, 'Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., in press
9 X. Zhang, S. Ohara, R. Marie, K. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, and K. Miura, 'Ni-SDC Cermet Anode for Medium-Temperature Solid Oxide Fuel Cell with Lanthanum Gallate Electrolyte,' J. Power Sources, 83 170-77 (1999)   DOI   ScienceOn
10 Y. Matsuzaki and I. Yasuda, 'Electrochemical Properties of Reduced-Temperature SOFCs with Mixed Ionic-Electronic Conductors in Electrodes and/or Interlayers,' Solid State Ionics, 152-153 463-68 (2002)   DOI   ScienceOn
11 J.-H. Kim and H.-I. Yoo, 'Partial Electronic Conductivity and Electrolytic Domain of $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$' Solid State Ionics, 140 105-13 (2001)   DOI   ScienceOn
12 K. Huang and J. B. Goodenough, 'A Solid Oxide Fuel Cell Based on Sr- and Mg-Doped $LaGaO_3$ Electrolyte: The Role of a Rare-Earth Oxide Buffer,' J. Alloys and Compounds, 303-304 454-64 (2000)   DOI   ScienceOn
13 P. Huang, A. Horky, and A. Petrie, 'Interfacial Reaction between Nickel Oxide and Lanthanum Gallate during Sintering and Its Effect on Conductivity,' J. Am. Ceram. Soc., 82 [9] 2402-06 (1999)   DOI
14 K. Huang, R. Tichy, and J. B. Goodenough, 'Superior Perovskite Oxide-Ion Conductor Strontium- and Magnesium Doped $LaGaO_3$ II, AC Impedance Spectroscopy,' J. Am. Ceram. Soc., 81 [10] 2576-80 (1998)   DOI   ScienceOn
15 Z. Bi, B. Yi, Z. Wang, Y. Dong, H. Wu, Y. She, and M. Cheng, 'A High-Performance Anode-Supported SOFC with LDC-LSGM Bilayer Electrolytes,' Electrochemical and Solid-State Letters, 7 [5] 105-07 (2004)
16 K. N. Kim, J. H. Moon, J. W. Son, J. S. Kim, H. W. Lee, J. H. Lee, and B. K. Kim, 'Interfacial Stability between Anode and Electrolyte of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [7] 509-15 (2005)   DOI   ScienceOn
17 M. C. Williams, 'Fuel Cell Handbook,' Sixth Edition, 37-52, EG&G Technical Services. Inc., West Virginia, 2002
18 K. Huang, M. Feng, and J. B. Goodenough, 'Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr- and Mg-Doped $LaGaO_3$,' J. Electrochem. Soc., 144 [10] 3620-23 (1997)   DOI   ScienceOn
19 R. Marie, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, and K. Miura, 'Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and $LaSrCoO_3$ Cathode, and Ni-Samaria-Doped Ceria Cermet Anode,' J. Electrochemical Soc., 146 [6] 2006-10 (1999)   DOI   ScienceOn
20 J. Larminie and A. Dicks, 'Fuel Cell Systems Explained,' pp. 1-59, Plenum Press, New York, 1993
21 F. Zhao and A. V. Virkar, 'Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters,' J. Power Sources, 141 [1] 79-95 (2005)   DOI   ScienceOn