• Title/Summary/Keyword: LPS-MAPK pathway

Search Result 96, Processing Time 0.035 seconds

Anti-inflammatory Activities of Apple Extracts and Phloretin (사과 추출물과 phloretin에 의한 항염증 활성)

  • Kim, Geun-Ho;Lee, Eun-Joo;Ryu, Seung-Min;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.158-163
    • /
    • 2021
  • In the present study, we prepared hot water extracts of green apple (GAHW) and unripe apple (UAHW), and ethanol extract of green apple (GAE), and investigated their anti-inflammatory activities in LPS-activated RAW264.7 cells. All extracts dramatically suppressed nitric oxide (NO) production in a dose-dependent manner in LPS-stimulated RAW264.7 cells without affecting cell viability. In addition, all extracts decreased the expression of iNOS, whereas UAHW only reduced the expression of COX-2. All extracts suppressed the phosphorylation of MAPKs (p38, ERK, and JNK) indicating all extracts show their anti-inflammatory activities via regulating MAPK pathway. Furthermore, all extracts reduced the production of reactive oxygen species in a dose-dependent manner and they increased the expression of heme oxygenase-I (HO-I) whereas UAHW could not. We also investigated whether apple flavonoids phloretin and phloridzin can have their anti-inflammatory activities in same in vitro model. Phloretin dramatically decreased NO production in a dose dependent manner without affecting cell viability, whereas phloridzin have no effects. Phloretin also reduced the expression of iNOS as well as COX-2, whereas phloridzin could not. Overall, these results suggest that apple extracts have their anti-inflammatory activities via regulating MAPKs and HO-1 pathways, and apple flavonoid phloretin can be one of phytochemicals responsible for anti-inflammatory effect of apple.

Suppressive Effects of Lees from Sweet Potato Soju on LPS-induced Inflammatory Responses in RAW 264.7 Cells (고구마 소주 주박에 의한 RAW 264.7 세포주에서 lipopolysaccharide로 유도된 염증 반응의 억제 효과)

  • Lee, Seung-Hoon;Kwon, Min-Jeong;Kim, Soon Young;Sohn, Ho-Yong;Shin, Woo-Chang;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.117-122
    • /
    • 2016
  • In the current study, the ethanol extracts and their subsequent organic solvent fractions from lees of sweet potato soju were prepared and the prepared samples were designated as from KSD-E8-1 to KSD-E8-5. Their effects on cell viability and nitric oxide (NO) production in mouse macrophage RAW 264.7 cells were investigated. The results showed that the ethyl acetate fraction (KSD-E8-3) of lees extracts from sweet potato soju significantly decreased nitric oxide (NO) production in LPS-activated RAW 264.7 cells, whereas they did not affect cell viabilities. The fraction KSD-E8-3 reduced the expression of pro-inflammatory genes such as COX-2, iNOS and TNF-alpha and also decreased protein expression of iNOS in a dose dependent manner, which were detected with RT-PCR and Western blot analysis, respectively. In addition, we detected the expression of mitogen-activated protein kinases (MAPKs) such as p38, JNK, and ERK1/2 and their phosphorylated forms. The results indicated that the treatment of the fraction KSD-E8-3 did inhibit phosphorylation of p38, JNK, and ERK1/2 MAPKs, indicating that the fraction KSD-E8-3 regulates LPS-induced inflammatory response via suppressing MAPK signaling pathway. Overall, these results may contribute to understand the molecular mechanism of anti-inflammatory effects by the ethyl acetate fraction of lees extracts from sweet potato soju.

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Anti-inflammatory Effects of Ponciri Fructus Extracts on Raw 264.7 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.91-91
    • /
    • 2018
  • Poncirus Fructus (PF) is obtained by drying the trifoliate orange fruit belonging to the Rutaceae family. In our country of medicine, PF has been used as a treatment of indigestion, allergy and inflammation. But Mechanism and medical data for PF is insignificant. Recently, the effect of the study PF of biological activity was reported, such as anti- thrombosis, anti-bacteria, anti-virus, anti- allergic. We investigated that the effect of PF on anti-inflammatory in murine macrophage-like cell line Raw264.7 cells. Our results show that the expression level of Nitric Oxide (NO) and Matrix-metallopeptidase-9 (MMP-9) significantly decreased. Moreover, to determine the expression level of pro-inflammatory cytokines such as Tumor Necrosis Factor ($TNF-{\alpha}$) and Interleukin-6 (IL-6) and the phosphorylation pattern of signaling molecules of mitogen-activated protein kinase (MAPK) family, we performed ELISA and westren blot in Raw264.7 cells. In addition, nuclear factor-kappa B ($NF-{\kappa}B$) pathway was confirmed. PF extract inhibited the production of $TNF-{\alpha}$ and IL-6. The extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our results suggest that PF can be used as a potential therapeutic agent or functional food to relieve inflammation.

  • PDF

Resolvin D5, a Lipid Mediator, Inhibits Production of Interleukin-6 and CCL5 Via the ERK-NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated THP-1 Cells

  • Chun, Hyun-Woo;Lee, Jintak;Pham, Thu-Huyen;Lee, Jiyon;Yoon, Jae-Hwan;Lee, Jin;Oh, Deok-Kun;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-κB.

Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

  • Tursun, Xirali;Zhao, Yongxin;Talat, Zulfiya;Xin, Xuelei;Tursun, Adila;Abdulla, Rahima;AkberAisa, Haji
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.184-190
    • /
    • 2016
  • Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin $E_2(PGE_2)$, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and interleukin $1{\beta}$ (IL-$1{\beta}$), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-${\kappa}B$) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

The effect of Saururus chinensis Baill against oxidative damage and inflammation

  • Hwang, Dong Ryeol;Jeong, Jin Boo;Eo, Hyun Ji;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Kim, Bo Ram;Koo, Jin Suk
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.1-6
    • /
    • 2012
  • Objectives : ROS are involved in a wide spectrum of diseases including chronic inflammation and cancer. S.chinensis Baill, a perennial herb commonly called Chinese lizard's tail or Sam-baek-cho in Korea, is used for the treatment of edema and inflammatory diseases in the Oriental folk medicine. In this study, we investigated the antioxidant activities and anti-inflammatory effects of the two extracts, water(WE) and ethyl acetate(EAE) from S.chinensis Baill. Methods : Anti-oxidant activity was evaluated using Fe2+ chelating and hydroxyl radical scavenging assay. DNA cleavage assay, and western blot and immunostaining for phospho-p65 were performed to evaluate anti-oxidative effect. Anti-inflammatory effect was performed using NO generation assay and western blot in LPS-stimulated RAW264.7 cell. Results : In Fe2+ chelating activity and hydroxyl radical scavenging activity, WE showed more strong scavenging activity for hydroxyl radical than EAE. WE scavenged hydroxyl radical by 12% at 3.2 ${\mu}g/ml$, 21% at 16 ${\mu}g/ml$, 32% at 80 ${\mu}g/ml$, 66% at 400 ${\mu}g/ml$ and 82% at 2000 ${\mu}g/ml$, respectively. In addition, WE showed more strong chelating activity than EAE. WE chelated Fe2+ ion by 1.1% at 3.2 ${\mu}g/ml$, 8.2% at 16 ${\mu}g/ml$, 26.3% at 80 ${\mu}g/ml$, 72% at 400 ${\mu}g/ml$ and 89% at 2000 ${\mu}g/ml$, respectively. Also, WE inhibited oxidative damage via its anti-oxidant activity. In anti-inflammatory effect, EAE inhibited NO production and iNOS expression. In addition EAE suppressed the NF-${\kappa}B$ and MAPK signaling pathway in LPS-stimulated RAW 264.7 cells. Conclusions : Together, these data indicate that S. chinensis Baill, shows anti-oxidant activity and anti-inflammatory effect.

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.