• Title/Summary/Keyword: LPS-MAPK pathway

Search Result 95, Processing Time 0.026 seconds

Lagerstroemia ovalifolia Exerts Anti-Inflammatory Effects in Mice of LPS-Induced ALI via Downregulating of MAPK and NF-κB Activation

  • Min, Jae-Hong;Kim, Seong-Man;Park, JI-Won;Kwon, Nam Hoon;Goo, Soo Hyeon;Ngatinem, Ngatinem;Ningsih, Sri;Paik, Jin-Hyub;Choi, Sangho;Oh, Sei-Ryang;Han, Sang-Bae;Ahn, Kyung-Seop;Lee, Jae-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1501-1507
    • /
    • 2021
  • Lagerstroemia ovalifolia Teijsm. & Binn. (LO) (crape myrtle) has reportedly been used as traditional herbal medicine (THM) in Java, Indonesia. Our previous study revealed that the LO leaf extract (LOLE) exerted anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Based on this finding, the current study aimed to evaluate the protective effects of LOLE in a mouse model of LPS-induced acute lung injury (ALI). The results showed that treatment with LPS enhanced the inflammatory cell influx into the lungs and increased the number of macrophages and the secretion of the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of mice. However, these effects were notably abrogated with LOLE pretreatment. Furthermore, the increase of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1) expression in the lung tissues of mice with ALI was also reversed by LOLE. In addition, LOLE significantly suppressed the LPS-induced activation of the MAPK/NF-κB signaling pathway and led to heme oxygenase-1 (HO-1) induction in the lungs. Additionally, in vitro experiments showed that LOLE enhanced the expression of HO-1 in RAW264.7 macrophages. The aforementioned findings collectively indicate that LOLE exerts an ameliorative effect on inflammatory response in the airway of ALI mice.

Anti-inflammatory Activity of 3,6,3'-Trihydroxyflavone in Mouse Macrophages, In vitro

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3169-3174
    • /
    • 2014
  • Numerous studies have examined the role of flavonoids in modulating inflammatory responses in vitro. In this study, we found a novel flavonoid, 3,6,3'-trihydroxyflavone (1), with anti-inflammatory effects. Anti-inflammatory activity and mechanism of action were examined in mouse macrophages stimulated with lipopolysaccharide (LPS). Our results showed that the anti-inflammatory effects of 1 are mediated via p38 mitogen-activated protein kinase (p38 MAPK), Jun-N terminal kinase (JNK), and the extracellular-signal-regulated kinase (ERK) pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Binding studies revealed that 1 had a high binding affinity to JNK1 ($1.568{\times}10^8M^{-1}$) and that the 3- and 6-hydroxyl groups of the C-ring and A-ring of 1 participated in hydrogen bonding interactions with the side chains of Asn114 and Lys55, respectively. The oxygen at the 3' position of the B-ring formed a hydrogen bond with side chain of Met111. Therefore, 1 could be a potential inhibitor of JNKs, with potent anti-inflammatory activity.

In vitro Anti-inflammation Effect of Adventitious Shoots of Toona sinesis in Propionibacterium acnes-induced Skin Dermatitis

  • Hyeon-Ji Lim;In-Sun Park;Seung-Il Jeong;Kang-Yeol Yu;Chan-Hun Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.73-73
    • /
    • 2020
  • Toona sinensis (TS) leaf is known to antinociceptive, antioxidative stress and skin moisturizing effects. Acnes vulgaris is a chronic skin disease with various symptoms including itchiness, pain and interruption of normal skin function. Propionibacterium acnes (P. acnes) is a major factor in the occurrence of inflammatory acnes. This study evaluated the antioxidant and anti-inflammation effects by TS extract from adventitious shoots. TS extract showed anti-inflammatory activities by suppression of pro-inflammation mediators (iNOS and COX-2) in LPS-stimulated RAW264.7 cells. TS extract also has anti-inflammatory activities by inhibiting the secretion of pro-inflammatory cytokines on P. acnes-stimulated HaCaT cells. These effects were regulated by MAPK signaling pathway. Therefore, we suggest that TS extract from adventitious shoots might have applications as a medicine for treating P. acnes-induced skin diseases.

  • PDF

Effects and molecular mechanisms of Noemyeong-san, a novel herbal prescription for treating Alzheimer's disease on microglia (미세아교세포에서 알츠하이머형 치매 치료 처방인 뇌명산(腦明散)의 효능 및 기전연구)

  • Han, Sangtae;Jeong, Ji-Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • Objectives : Noemyeong-san (NMS) is a novel herbal prescription composed of five oriental medicinal herbs including Prunellae Spica, Betulae Cortex, Foeniculi Fructus, Asiasari Radix, and Clematidis Radix for treating Alzheimer's disease. In the present study, we investigated the effects and molecular mechanisms of NMS on BV2 microglia to evaluate the potential action of this formula for preventing or treating neurodegenerative disease such as Alzheimer's disease. Methods : To determine the cytotoxicity of NMS on BV2 microglia, the MTT assay was performed. The effects of NMS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay and western blots for inflammatory mediator-related proteins, mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-${\kappa}B$) pathway-related proteins, and heme oxygenase-1 (HO-1). Result : NMS inhibited induction of iNOS and COX-2 as well as NO production without affecting the cell viability in LPS-stimulated BV2 microglia. NMS also suppressed activation of ERK and p38 MAPK among main kinases of MAPKs as well as NF-${\kappa}B$ by LPS stimulation. Furthermore, NMS dose-dependently induced the expression of HO-1 and the inhibitory effect of NMS on the production of NO were blocked by pretreatment with an HO-1 inhibitor, Snpp. Conclusions : These results demonstrate that NMS has potent anti-neuroinflammatory effect on the LPS-stimulated microglia. These findings provide evidences for NMS to be considered as a new prescription for preventing or treating neurodegenerative disease such as Alzheimer's disease.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

Nitric Oxide Dependency in Inflammatory Response-related Gene Transcripts Expressed in Lipopolysaccharide-treated RAW 264.7 Cells

  • Pie, Jae-Eun;Yi, Hyeon-Gyu
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.354-363
    • /
    • 2009
  • Cytotoxic Nitric oxide (NO) overproduced by inducible NO Synthase (iNOS or NOS2), which was induced in inflammatory reactions and immune responses directly or indirectly affects the functions as host defense and can cause normal tissue damage. Microarray analysis was performed to identify gene profiles of both NO-dependent and -independent transcripts in RAW 264.7 macrophages that use selective NOS2 inhibitors aminoguanidine ($100\;{\mu}M$) and L-canavanine (1 mM). A total of 3,297 genes were identified that were up- or down-regulated significantly over 2-fold in lipopolysaccharide (LPS)-treated macrophages. NO-dependency was determined in the expressed total gene profiles and also within inflammatory conditions-related functional categories. Out of all the gene profiles, 1711 genes affected NO-dependently and -independently in 567 genes. In the categories of inflammatory conditions, transcripts of 16 genes (Pomp, C8a, Ifih1, Irak1, Txnrd1, Ptafr, Scube1, Cd8a, Gpx4, Ltb, Fasl, Igk-V21-9, Vac14, Mbl1, C1r and Tlr6) and 29 geneas (IL-1beta, Mpa2l, IFN activated genes and Chemokine ligands) affected NO-dependently and -independently, respectively. This NO dependency can be applied to inflammatory reaction-related functional classifications, such as cell migration, chemotaxis, cytokine, Jak/STAT signaling pathway, and MAPK signaling pathway. Our results suggest that LPS-induced gene transcripts in inflammation or infection can be classified into physiological and toxic effects by their dependency on the NOS2-mediated NO release.

Effect of Quercetin in the UV-Irradiated Human Keratinocyte HaCaT Cells and A Model of Its Binding To p38 MAPK

  • Jnawali, Hum Nath;Lee, Eunjung;Shin, Areum;Park, Young Guen;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2787-2790
    • /
    • 2014
  • Quercetin is a major dietary flavonoid found in onions, apples, tea, and red wine, and potentially has beneficial effects on disease prevention. We carried out this study to investigate the effect of quercetin on UVB-induced matrix metalloproteinase-1 (MMP-1) expression in human keratinocyte HaCaT cells and to further understand the mechanisms of its action. The anti-inflammatory activity of quercetin was investigated and quercetin significantly suppressed the NO production in LPS-stimulated RAW264.7 mouse macrophages. Post treatment of quercetin decreased UV irradiation-induced phosphorylation of JNK, p38 MAPK, and ERK by 91%, 21%, and 17%, respectively. MMP-1 is mainly responsible for the degradation of dermal collagen during the aging process of human skin and quercetin suppressed the UVB-induced MMP-1 by 94%. Binding studies revealed that quercetin binds to p38 with high binding affinity ($1.85{\times}10^6M^{-1}$). The binding model showed that the 4'-hydroxy groups of the B-ring of quercetin participated in hydrogen bonding interactions with the side chains of Lys53, Glu71, and Asp168 and the 5-hydroxy group of the A-ring formed a hydrogen bond with the backbone amide of Met109. The major finding of this study shows that quercetin inhibits phosphorylation of JNK, p38 MAPK, and ERK pathway leading to the prevention of MMP-1 expression in human keratinocyte HaCaT cells. Therefore, our findings suggested the potentials of quercetin as a skin anti-photoaging agent.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4277-4283
    • /
    • 2015
  • Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro-inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-${\alpha}$ and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer.

Anti-inflammatory Activities of Apple Extracts and Phloretin (사과 추출물과 phloretin에 의한 항염증 활성)

  • Kim, Geun-Ho;Lee, Eun-Joo;Ryu, Seung-Min;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.158-163
    • /
    • 2021
  • In the present study, we prepared hot water extracts of green apple (GAHW) and unripe apple (UAHW), and ethanol extract of green apple (GAE), and investigated their anti-inflammatory activities in LPS-activated RAW264.7 cells. All extracts dramatically suppressed nitric oxide (NO) production in a dose-dependent manner in LPS-stimulated RAW264.7 cells without affecting cell viability. In addition, all extracts decreased the expression of iNOS, whereas UAHW only reduced the expression of COX-2. All extracts suppressed the phosphorylation of MAPKs (p38, ERK, and JNK) indicating all extracts show their anti-inflammatory activities via regulating MAPK pathway. Furthermore, all extracts reduced the production of reactive oxygen species in a dose-dependent manner and they increased the expression of heme oxygenase-I (HO-I) whereas UAHW could not. We also investigated whether apple flavonoids phloretin and phloridzin can have their anti-inflammatory activities in same in vitro model. Phloretin dramatically decreased NO production in a dose dependent manner without affecting cell viability, whereas phloridzin have no effects. Phloretin also reduced the expression of iNOS as well as COX-2, whereas phloridzin could not. Overall, these results suggest that apple extracts have their anti-inflammatory activities via regulating MAPKs and HO-1 pathways, and apple flavonoid phloretin can be one of phytochemicals responsible for anti-inflammatory effect of apple.