• Title/Summary/Keyword: LPP (Local Path Planning)

Search Result 7, Processing Time 0.024 seconds

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

Local Path Planning Manager for Autonomous Navigation of UGV (무인차량의 자율주행을 위한 지역경로계획 매니저)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.990-997
    • /
    • 2010
  • The Mission environment of UGV(Unmanned Ground Vehicle) has a complexity and variety, and the status of system and sensor is dependent on the environment factors such as operation time, the weather and road type. It is necessary for UGV to cope adaptively with the various mission types, operation modes and operation environment as human operators do. To satisfy this necessity, we present an autonomy manager based on the autonomous architecture. In this paper, we design a path planning software architecture and LPP manager by using open autonomous architecture which is previously designed by ADD. Field test is conducted with UGV in order to verify the performance of LPP Manager based on the Autonomous Architecture with scenarios.

Local Path Planning Method based on Autonomy Manager for Autonomous Navigation in Urban Environment (도심환경 자율주행을 위한 자율매니저 기반 경로계획 기법)

  • Lee, Young-Il;Ahn, Seong-Yong;Kim, Chong-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.719-725
    • /
    • 2013
  • In this paper, we propose a local path planning method based on RANGER algorithm and autonomy manager for autonomous navigation of UGV in urban environment. LPP method is designed to generate the local path in sensing area by using lane and curb of pavement and autonomy manager is designed to make a decision which transit the status of LPP component to a proper status for current navigation environment. A field test is conducted with scenarios in real urban environment in which crossroad, crosswalk and pavement are included and the performance of proposed method is validated.

Temporal Waypoint Revision Method to Solve Path Mismatch Problem of Hierarchical Integrated Path Planning for Mobile Vehicle (이동 차량의 계층적 통합 경로 계획의 경로 부조화 문제 해결을 위한 임시 경유점 수정법)

  • Lee, Joon-Woo;Seok, Joon-Hong;Ha, Jung-Su;Lee, Ju-Jang;Lee, Ho-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.664-668
    • /
    • 2012
  • Hierarchical IPP (Integrated Path Planning) combining the GPP (Global Path Planner) and the LPP (Local Path Planner) is interesting the researches who study about the mobile vehicle in recent years. However, in this study, there is the path mismatch problem caused by the difference in the map information available to both path planners. If ever a part of the path that was found by the GPP is available to mobile vehicle, the part may be unavailable when the mobile vehicle generates the local path with its built-in sensors while the vehicle moves. This paper proposed the TWR (Temporal Waypoint Reviser) to solve the path mismatch problem of the hierarchical IPP. The results of simulation provide the performance of the IPP with the TWR by comparing with other path planners.

Local Path Plan for Unpaved Road in Rough Environment (야지환경의 비포장도로용 지역경로계획)

  • Lee, Young-Il;Choe, Tok Son;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Modified $A^*$ - Local Path Planning Method using Directional Velocity Grid Map for Unmanned Ground Vehicle (Modified $A^*$ - 방향별 속도지도를 활용한 무인차량의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • It is necessary that UGV(Unmanned Ground Vehicle) should generate a real-time travesability index map by analyzing raw terrain information to travel autonomously tough terrain which has various slope and roughness values. In this paper, we propose a local path planning method, $MA^*$(Modified $A^*$) algorithm, using DVGM (Directional Velocity Grid Map) for unmanned ground vehicle. We also present a path optimization algorithm and a path smoothing algorithm which regenerate a pre-planned local path by $MA^*$ algorithm into the reasonable local path considering the mobility of UGV. Field test is conducted with UGV in order to verify the performance of local path planning method using DVGM. The local path planned by $MA^*$ is compared with the result of $A^*$ to verify the safety and optimality of proposed algorithm.

Study about Low-Cost Autonomous Driving Simulator Framework Based on 3D LIDAR (33D LIDAR 를 기반으로 하는 저비용 자율 주행 시뮬레이터 프레임워크에 대한 연구)

  • O, Eun Taek;Cho, Min Woo;Gu, Bon Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.702-704
    • /
    • 2022
  • 자율주행 시뮬레이터를 위한 대체재로 게임 엔진을 통한 가상 환경 모의 연구가 수행되고 있다. 하지만 게임 엔진에서는 자율 주행에 필요한 센서를 기기에 맞게 사용자가 직접 모델링을 해줘야 하기 때문에 개발 비용이 크게 작용된다. 특히, Ray 를 활용한 3D LIDAR 는 GPU(Graphics Processing Unit) 사용량이 많은 작업이기 때문에 저비용 시뮬레이터를 위해서는 저비용 3D LIDAR 모의가 필요하다. 본 논문에서는 낮은 컴퓨터 연산을 사용하는 C++ 기반 3D LIDAR 모의 프레임 워크를 제안한다. 제안된 3D LIDAR 는 다수의 언덕으로 이루어진 비포장 Map 에서 성능을 검증 하였으며, 성능 검증을 의해 본 논문에서 생성된 3D LIDAR 로 간단한 LPP(Local Path Planning) 생성 방법도 소개한다. 제안된 3D LIDAR 프레임 워크는 저비용 실시간 모의가 필요한 자율 주행 분야에 적극 활용되길 바란다.