• Title/Summary/Keyword: LPG leakage

Search Result 61, Processing Time 0.031 seconds

Study for Failure Examples Including with Gas filter Clogging of Emergency Cutting Valve, Assemblying Part Damage of Solenoid Valve, Contact Damage of LPG Switch Connector Fin in a LPG Car (LPG 자동차의 긴급차단밸브 기상필터막힘, 솔레노이드밸브 조립부손상, LPG 스위치 커넥터 핀 접촉불량에 관련된 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Kim, Sung Mo;Jung, Dong Hwa;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • This paper is a purpose to study and analyze the engine starting failure examples for LPG car. The first example, the researcher verified the phenomenon that didn't supply the fuel because of filter clogging by fine alien substance in the gas valve line when he inspected the emergency cutting valve. The second example, there was no the influence of gas leakage when the solenoid operated at first. But the damage part of solenoid assemblying face wad downed a durability according to running a valve. Eventually, the researcher checked on the phenomenon of engine stopping by no gas feeding in solenoid because of leaking of gas. The third example, the researcher sought that the wiring sheaths of connector fin between EGR 10A fuse and LPG switch verified the burn-out phenomenon due to the bad contacting as tension damage produced the overheating. Therefore, the manager of a car has to do pre-inspection no producing electric failure and he must maintain his car with optimum condition.

Experimental Investigation on Cracks and Defects of a Valve Sealing Components for a LPG Cylinder (LPG 용기용 밸브의 밀봉부품 크랙 및 결함에 관한 실험적 고찰)

  • Kim, Chung-Kyun;Lee, Byung-Kwan;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.23-28
    • /
    • 2007
  • This paper presents an experimental investigation on the sealing defects and cracks of O-rings and a valve packing of a gas valve for a LPG cylinder. O-ring in which stops a gas leakage of a liquefied petroleum gas is very important for a LPG valve safety. Valve packing is to open and close a gas flow port for supplying and charging a LPG fuel. The sealing performance of two sealing units ism related to the leak safety and long lift of a gas valve. The investigated results show that most of O-rings was failed due to a circumferential crack in which is caused by partial press bonding failure near the partition zone and an excess compression rate. Some of the O-ring failure was originated by an extrusion of an excessive leak pressure of a LP gas. Thus, this paper strongly recommends a tight quality control and a safety guarantee system of O-rings and valve packing to guarantee a leak safety and to extend a service lift of a gas valve. At the end, a warranty policy of the sealing units should be adopted for increasing a product quality and safety of a gas valve.

  • PDF

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

Accidents Analysis of Domestic and Overseas Refueling Stations and Assessment of Dangerous Distance by Gas Leak (국내·외 충전소 사고 현황 분석 및 가스누출 피해거리 평가)

  • Kim, Hyelim;Kang, SeungKyu;Huh, YunSil
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As environmental problems become a problem of survival, interest in eco-friendly energy is increasing to improve the environment. So, demand for eco-friendly fuels such as hydrogen, LPG and CNG is increasing. In particular, Korea, which relies on imports of most fuels, is investing in the development of hydrogen energy, which is favorable in terms of high production volume and energy independence. However, As demand grows every year, a variety of accidents occur in various ways, ranging from small leak incidents to massive fires and explosion, thus research needs to be done. So, in this study, compared and analyzed cases of hydrogen, LPG, CNG accidents occurring at domestic and overseas refueling stations. and various programs were used for assessing risk, estimated the flame length due to gas leakage and evaluated the dangerous distance.

Study on the sprayability of the skincare product with powders using LPG as propellant (액화석유가스를 이용한 파우더 함유 화장품의 분사안정성에 관한 연구)

  • Kim Hwayong;Park Chanik;Bae Won
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.7-12
    • /
    • 2004
  • In the quality control of the aerosol skincare products containing powders, it is essential to guarantee that the contents in the bottle can be completely used without leakage or clogging of the nozzle. In this paper, the clogging caused by powder was investigated and the clogging can be effectively removed by emulsifying the contents containing powder with the LPG using a proper surfactant. And the spraying test shows that the contents in the bottle are completely propelled to outside by LPG when properly emulsified by POE(40) HCO.

  • PDF

A Study on the Vented Gas Explosion Characteristics of Indoor Leakage of the LPG (실내 LPG 누출시 폭발특성에 관한 연구)

  • Oh Kyu-hyung;Kim Hong;Kim Sang-sub;Jo Yoong-do;Jo Jee-whan;Oh Shin-kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.51-57
    • /
    • 1999
  • A study on the vented gas explosion characteristics were carried out with the liquified petroleum gas(LPG) which is used in domestics and industries fuel. To evaluate a damage by gas explosion and to predict a explosion hazards, a series of experiment have been performed in the regular hexahedron vessel of 270${\iota}$. A side of the vessel was made to setting a polyester diaphragm which was ruptured by explosion to simulate an accidental explosion which ruptured the window by explosion. Experimental parameters were LPG concentration, ignition position, venting area, a strength of diaphragm which was ruptured and distances from venting, Experimental results showed that vented gas explosion pressure was more affected by the diaphragm strength than the gas concentration, and the vented gas explosion pressure and blast wave pressure was increased with decreasing the venting area and increasing the strength of diaphragm. In this research we can find that a damage by vented explosion at the outside can be larger than the inside by blast wave pressure near the venting.

  • PDF

A Comparison on Detected Concentrations of LPG Leakage Distribution through Actual Gas Release, CFD (FLACS) and Calculation of Hazardous Areas (가스 누출 실험, CFD 및 거리산출 비교를 통한 LP가스 누출 검지농도 분포에 대한 고찰)

  • Kim, Jeong Hwan;Lee, Min-Kyeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.102-109
    • /
    • 2021
  • Recently, an interest in risk calculation methods has been increasing in Korea due to the establishment of classification code for explosive hazardous area on gas facility (KGS CODE GC101), which is based on the international standard of classification of areas - explosive gas atmospheres (IEC 60079-10-1). However, experiments to check for leaks of combustible or toxic gases are very difficult. These experiments can lead to fire, explosion, and toxic poisoning. Therefore, even if someone tries to provide a laboratory for this experiment, it is difficult to install a gas leakage equipment. In this study we find out differences among actual experiments, CFD by using FLACS and calculation based on classification code for explosive hazardous area on gas facility (KGS CODE GC101) by comparing to each other. We develpoed KGS HAC (hazardous area classification) program which based on KGS GC101 for convenience and popularization. As a result, actual gas leak, CFD and KGS HAC are showing slightly different results. The results of dispersion of 1.8 to 2.7 m were shown in the actual experiment, and the CFD and KGS HAC showed a linear increase of about 0.4 to 1 m depending on the increase in a flow rate. In the actual experiment, the application of 3/8" tubes and orifice to take into account the momentum drop resulted in an increase in the hazardous distance of about 1.95 m. Comparing three methods was able to identify similarities between real and CFD, and also similarities and limitations of CFD and KGS HAC. We hope these results will provide a good basis for future experiments and risk calculations.

Validity Review on Classification of Explosion Hazardous Area using Hypothetic Volume (가상체적을 이용한 폭발위험장소 구분의 타당성 검토)

  • Yim, Ji-Pyo;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.68-75
    • /
    • 2014
  • It is very important to classify explosion hazardous area (EHA) suitably and to use proper explosion-proof electric installations for facilities using flammable gases and liquids. In the past, various examples in the Notification of Ministry of Employment and Labor were referred to in classifying EHA. But, at present, many companies use the hypothetical volume in Korean Standards (KS). This study reviews the validity of EHA classification based on the hypothetical volume by comparing the calculated radii of EHA with those obtained by a consequence analysis program called PHAST and a mathematical approach in British Standards (BS). The radii of EHA by the hypothetical volume were found to be slightly larger than those by the other two methods. This was attributed to rather conservative uses of a safety factor(k) and a correction factor(f) for availability of ventilation in calculating the hypothetical volume. Since the differences are not so conspicuous, however, it is concluded that the hypothetical volume in KS is a valid means for the classification of EHA. This study also presents a table of the radii of EHA for easy reference by small-scale companies using city gas, C3-LPG and flammable liquid(toluene), respectively. The table consists of 25 leakage scenarios corresponding to combinations of 5 pipe(nozzle) sizes and 5 operating conditions for each flammable gas and liquid.

Lean Combustion Characteristics with Hydrogen Addition in a LPG Fuelled Spark Ignition Engine (LPG엔진에서 수소연료 보조분사에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • The basic effects of hydrogen addition for engine performance and emission were investigated in single cylinder research engine. Seven commercial injectors were tested to choose a suitable injector for hydrogen injection prior to its engine implementation. The hydrogen fuel leakage and flow rate were evaluated for each injector and KN3-1(Keihin, CO.) showed the best performance for hydrogen fuel. At the higher excess air ratio(${\lambda}=1.7$, 2.0), the better combustion stability was found with hydrogen addition even though its effect was small at lower excess air ratio (${\lambda}=1.0$, 1.3). Stable operation of the engine was even guaranteed at ${\lambda}=2.0$, if the amount of hydrogen gas was near 15% of total energy. In the lean region, ${\lambda}>1.3$, thermal efficiency was improved slightly while it was not clearly observed at ${\lambda}=1.0$, 1.3. It is considered that, in some cases, high temperature environment due to hydrogen combustion caused further heat loss to surroundings. Except for ${\lambda}=1.0$, with larger amount of hydrogen addition, CO was reduced drastically but it was emitted more at the leaner region. Nitric oxides(NOx) was increased a little more with hydrogen addition at ${\lambda}=1.0$, 1.3. However, at ${\lambda}>1.3$ its relative amount of emission was low. In addition, the amount of NOx was continuously decreased with hydrogen addition, but, at ${\lambda}=2.0$ the amount of NOx was lowered to 1/100 of that of ${\lambda}=1.0$. THC emission was significantly increased as air/fuel ratio was raised to leaner region due to misfire and partial burn.