• Title/Summary/Keyword: LPG Fuel

Search Result 362, Processing Time 0.022 seconds

Feasibility Test of LPG Vehicles by Using DME-LPG Blends (DME-LPG 혼합연료를 사용한 LPG 차량의 실증평가)

  • Youn, Jumin;Lee, Minho;Park, Cheonkyu;Hwang, Inha;Ha, Jonghan;Kang, Yong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-41
    • /
    • 2015
  • Dimethyl ether (DME) can be used as a clean diesel alternative fuel due to the high cetane number and low emission, it can also be applied to automotive fuel as a blended liquefied petroleum gas (LPG) because physical properties are similar to those of LPG. In this study, feasibility test of LPG vehicle using blended DME-LPG fuel was investigated. Three types of fuel supply such as LPLi (Liquid phase LPG injection), LPGi (Liquid phase gas injection) and mixer type were selected to consider the LPG fuel-injection system. The performance characteristics of LPG vehicle were examined by using LPG and blended DME-LPG fuel in order to compare the exhaust emissions (CO, THC, $NO_X$) and fuel economy. The emissions and fuel economy of DME-LPG blend fuel were comparable to those of LPG with increasing driving distance.

Durability Properties of Liquid Phase LPG Injection System with Various Qualities of LPG Fuels (LPG연료품질에 따른 LPG액상분사방식의 내구특성연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2004
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system. To investigate the durability property of core part of injector in liquid phase LPG injection system, leakage test, SEM test of injectors and analysis of unvaporized fuel components with various LPG fuel qualities were tested. The experimental results showed that no serious problem in durability test using favorable LPG fuel quality, while high leakage amount due to the large scratches in the needle and nozzle of the injector were found using LPG fuel with highly containing olefin components, especially butadiene species.

The Effect of N-butane and Propane on Performance and Emissions of a SI Engine Operated with LPG/DME Blended Fuel (LPG/DME 혼합연료를 사용하는 전기점화 기관에서 LPG 성분이 엔진 성능 및 배기특성에 미치는 영향)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. The effect of n-butane and propane on performance and emissions of a SI engine fuelled by LPG/DME blended fuel were examined. Stable engine operation was achieved for a wide range of engine loads with propane containing LPG/DME blended fuel compare to butane containing LPG/DME blended fuel since octane number of propane was much higher than that of butane. Also, engine output operated with propane containing blended fuel was comparable to pure LPG fuel operation. Engine output power was decreased and break specific fuel consumption (BSFC) was increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power, bsfc, and exhaust emissions, the propane containing LPG/DME blended fuel could be used as an alternative fuel for LPG.

A Study on the Exhaust Emissions Characteristics of LPG Vehicle using LPG Fuel with Sulfur Free Odorant (비황분계 부취제를 혼합한 LPG 연료의 차량 배출가스 특성에 관한 연구)

  • Kim, Jae-Kon;Lee, Ho-Kil;Yim, Eui Soon;Jung, Choong-Sub
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.545-554
    • /
    • 2014
  • In general, odorant was added to fuel gases, such as LPG, LNG and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. This study describes a study on the exhaust emissions characteristics and fuel economy of liquefied petroleum gas (LPG) vehicle using LPG fuel with new sulfur free odorant. New sulfur free odorant was added to LPG to reduce sulfur content of the LPG. Its performance and exhaust emission were compared to those of LPG with sulfur containing odorant (EM, ethyl mercaptan). Engine performance using LPG with sulfur free odorant was similar to that with sulfur-containing odorant. Exhaust emissions from the LPG vehicle with LPG including sulfur free odorant were also similar to those with LPG including sulfur containing odorant in the FTP 75 and NEDC mode. There experimental results suggest that the sulfur free odorant may substitute for the sulfur containing odorant in LPG fuel.

Performance of Blowoff Flow for a LPG Fuel Pump with Various Fuel Filters (LPG 펌프에서 필터 종류에 따른 펌프 토출성능에 대한 연구)

  • Lee, Seok-Hwan;Park, Cheol-Woong;Kim, Chang-Up
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • In recent years, the needs for more fuel-efficient and lower-emission vehicles have driven to use the alternative fuel of LPG(Liquefied Petroleum Gas) which is able to meet the more stringent legislations without many modifications to current engine. LPLi (Liquid Phase LPG Injection) system (the 3rd generation LPG injection system) is the core technology to produce power equivalent to a gasoline engine with less emissions. The LPG fuel pump can supply the compressed LP gas in the liquid phase to engine. The fuel filter is attached in the fuel pump to eliminate the remnants in the liquid phased LP gas and the performance of blowoff flow for a pump can be varied with various filters. In this study, experiments were conducted to investigate the performance and efficiency of the impeller type LPG fuel pump under various filter types of microfiber, double mesh and external filter. And blowoff flow for a LPG fuel pump was measured according to the temperature of the fuel.

  • PDF

Reaction Characteristics of Rubbers and LPG fuels in LPLi Fuel Supply System (고무류 반응특성이 LPG액상공급시스템의 연료분사기 성능에 미치는 영향)

  • Kim, Chang-Up;Park, Cheol-Woong;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type (the second generation technology) fuel supply system. To investigate the characteristics of LPG residue in liquid phase LPG injection system, various rubbers in LPG fuel system were reacted with LPG fuels during 3 months. The experimental results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And rubber properties of fuel pump cover were decreased after reaction test compared with those of the original rubber. Therefore, the rubber for fuel pump cover is not suitable for a proper material in LPLi fuel system. And these results can provide more information if a motor company shares the data of core rubber parts in field test LPLi vehicles.

  • PDF

Performance and Emissions of a SI Engine Operated with LPG-DME Blended Fuel (LPG-DME 혼합연료를 사용하는 전기점화 기관의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.175-182
    • /
    • 2008
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. Performance and emissions characteristics of a LPG engine fuelled by LPG and DME blended fuel were examined. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to pure LPG fuel operation. Exhaust emissions measurements showed that hydrocarbon and NOx were increased with the blended fuel at low engine speed. Engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power and exhaust emissions, the blended fuel within 20% mass content of DME could be used as an alternative fuel for LPG.

A Study on the Combustion Characteristics and the Control on the Fuel Flow Rate of LPG Intake Port Injection Engine (흡기포트 분사식 LPG 엔진의 연료량 제어 및 연소 특성에 관한 연구)

  • 김우석;이종화;정창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.31-39
    • /
    • 2000
  • In this paper, characteristics of a port injection type LPG fuel system were investigated to adopt the system to a spark ignition engine through rig test. Engine combustion characteristics for limited conditions and the precise control method of LPG fuel supply were also studied. As a basic experiment, the effects and the relationships of parameters such as orifice area, fuel delivery pressure, fuel temperature and flow coefficient were established. From this, one dimensional compressible flow equation can be applied to control gaseous fuel flow rate by setting pressure difference between vaporizer and manifold to a certain range, for example about 1.2 bar in a naturally aspirated engine. The combustion analysis results of LPG engine were also compared with those of gasoline engine according to spark timing and load change. At part load and stoichiometric condition, the MBT spark timing of LPG fueled engine is retarded by 2$^{\circ}$ - 4$^{\circ}$CA compared to that of gasoline engine. On the contrary, the spark timing of LPG fueled engine can be advanced by 5$^{\circ}$- 10$^{\circ}$ CA at WOT, which results from higher Octane Number and burned fraction of LPG fuel compared to gasoline.

  • PDF

The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle (LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

A Study on the Performance Characteristics of a Fuel Pump in LPG Engine (자동차용 LPG 펌프의 성능특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2007
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG(Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a hish vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. In this study, experiments are performed to get performance and efficiency of the fuel pump under different condition of the temperature, rotating speeds, and composition of fuel. The characteristics of fuel pump were affected by cavitation occurred from the variation of temperature and composition.

  • PDF