Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145 154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
로지스틱회귀분석은 고객관계관리나 신용위험관리 등의 분야에서 많이 사용되는 기법인데, 이러한 분야에서의 로지스틱회귀모형에는 연관성이 높은 설명변수들이 다수 포함되어 다중공선성의 문제를 유발하는 경우가 있다. 다중공선성이 존재하는 상황에서 최우추정량은 심각한 결함을 갖는다는 사실은 잘 알려졌다. 이 문제를 해결하기 위하여 로지스틱주성분회귀를 연구하되, 분석상의 주요 과정인 주성분 선정을 위한 방법을 새롭게 제안하였다. 추정량의 분산을 최소가 되게 하는 상태지수 값을 측정하고, 이 값에 영향을 미치는 주요 요인들을 컨조인트분석에 의해 파악하여 주성분 선정기준을 결정하는 모형을 구축하였다. 제안된 방법은 다중공선성 문제를 적절히 해결하면서도 모형의 적합성을 향상시킨다는 사실이 모의실험을 통하여 확인되었다.
문제음주는 개인의 정서적 문제와 신체적 질병을 유발하며 사고나 상해, 주취폭력 등 주변인 및 지역사회에 미치는 부정적 폐해가 크기 때문에 어떠한 특성을 가진 개인이 문제음주의 가능성이 높은지 그 예측요인을 규명하는 것은 음주와 관련한 치명적인 손실을 예방하기 위해 무척 중요하다. 이에 본 연구는 2012년도에 실시된 한국복지패널 7차년도 데이터 중 음주경험이 있으며 AUDIT에 응답한 3,915명을 대상으로 문제음주와 인구사회학적, 심리사회적 변인과의 관계를 분석하고, 문제음주의 예측요인을 검증하기 위해 로지스틱 회귀분석을 실시하였다. 연구 결과 조사대상자의 36%가 문제음주군으로 나타났으며, 성별, 연령, 학력, 직업, 경제적 상황과 자아존중감, 우울, 가족관계 만족 및 사회관계 만족이 문제음주와 상관관계가 있는 것으로 확인되었다. 또한 로지스틱 회귀분석 결과 조사대상자의 문제음주를 예측하는 요인은 성별, 연령, 학력, 직업, 자아존중감 및 우울로 확인되었다. 이러한 결과를 토대로 일반 성인들의 문제음주군으로의 진입을 예방하기 위한 실천적 방안의 근거를 제시하였다.
온라인 리뷰는 시장 내에서의 기업의 가치를 평가하는 데 있어 중요한 역할을 하며, 기업의 수익에 큰 영향을 미치는 요인 중 하나이다. 따라서 온라인 리뷰의 감성 분석 지표는 사업의 성공을 예측할 수 있는 중요한 지표 중 하나이다. 본 연구에서는 대표적인 온라인 리뷰 플랫폼 중의 하나인 Yelp 플랫폼에 있는 레스토랑 리뷰 텍스트를 연구대상으로 선정하였고, Yelp Open Dataset에서 제공하는 리뷰 데이터 세트를 활용하였다. 본 연구에서는 레스토랑 리뷰의 Polarity Prediction을 위해 Logistic Regression, SVM, Random Forest, Gradient Boosting Machine(GBM), XGBoost, LightGBM 총 6가지 머신러닝 알고리즘을 사용하여 연구를 진행하였다. 각 모델의 성능평가 결과, Logistic Regression, SVM, LightGBM 알고리즘이 0.91로 가장 정확도가 높게 나타났다. 본 연구는 비정형화된 형태로 작성된 텍스트의 리뷰 데이터를 정량화하여 평점으로 예측할 수 있도록 하여 스타트업을 포함한 기업이 고객 피드백을 효과적으로 분석할 수 있도록 한다는 점에서 공헌점이 있다, 나아가 비즈니스 운영자들이 소비자 행동을 예측하고, 마케팅 전략 수립에 활용할 수 있는 유용한 인사이트를 제공할 수 있을 것으로 기대된다.
Purpose: The purpose of this study was to compare sociodemographic characteristics of a normal cognitive group and mild cognitive impairment group, and establish prediction models of Mild Cognitive Impairment (MCI). Methods: This study was a secondary data analysis research using data from "the 4th Korea Longitudinal Study of Ageing" of the Korea Employment Information Service. A total of 6,405 individuals, including 1,329 individuals with MCI and 5,076 individuals with normal cognitive abilities, were part of the study. Based on the panel survey items, the research used 28 variables. The methods of analysis included a χ2-test, logistic regression analysis, decision tree analysis, predicted error rate, and an ROC curve calculated using SPSS 23.0 and SAS 13.2. Results: In the MCI group, the mean age was 71.4 and 65.8% of the participants was women. There were statistically significant differences in gender, age, and education in both groups. Predictors of MCI determined by using a logistic regression analysis were gender, age, education, instrumental activity of daily living (IADL), perceived health status, participation group, cultural activities, and life satisfaction. Decision tree analysis of predictors of MCI identified education, age, life satisfaction, and IADL as predictors. Conclusion: The accuracy of logistic regression model for MCI is slightly higher than that of decision tree model. The implementation of the prediction model for MCI established in this study may be utilized to identify middle-aged and elderly people with risks of MCI. Therefore, this study may contribute to the prevention and reduction of dementia.
Communications for Statistical Applications and Methods
/
제9권3호
/
pp.853-864
/
2002
In the analysis of categorical data subject to misclassification errors, the observed cell proportions are adjusted by a misclassification probabilities and estimates of variances are adjusted accordingly. In this case, it is important to determine the extent to which misclassification probabilities are homogeneous within a population. This paper considers methods to evaluate the power of chi-squared tests for homogeneity with complex survey data subject to misclassification errors. Two cases are considered: adjustment with homogeneous misclassification probabilities; adjustment with heterogeneous misclassification probabilities. To estimate misclassification probabilities, logistic regression method is considered.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.605-616
/
2000
Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.
This study examined the forecasting of instant messinger's users choice using neural network. We used the statistical methods which were Logistic Regression, MDA(Multiple Discriminant Analysis), and ANN(Artificial Neural Network). In the result, the forecasting performance of the ANN was better than conventional model(Logistic Regression, MDA).
In general, it is very efficient and effective to use screening variables that are correlated with the performance variable in case that measuring the performance variable is impossible (destructive) or expensive. The general methodology for searching surrogate variables is regression analysis. This paper considers the inspection problem in CRT (Cathode Ray Tube) production line, in which the performance variable (dependent variable) is binary type and screening variables are continuous. The general regression with dummy variable, discriminant analysis and binary logistic regression are considered. The cost model is also formulated to determine economically inspection procedure with screening variables.
도시화로 인한 불투수층 증가와 하천 주변 개발은 홍수 시 위험에 노출되는 재해요인의 증가뿐 아니라 피해의 파급을 발생시켜 홍수 관리 측면에서 어려움을 낳는다. 홍수 방재대책을 위해서는 도시지역에 분포하는 다양한 지표면 공간특성을 반영하여 침수가 예상되는 지역에 대한 파악이 우선시되어야 한다. 본 연구에서는 도시하천의 홍수 위험지역을 대상으로 확률적 홍수위험 평가가 수행되었다. 홍수와 관련된 지형적 영향요인인 고도, 경사, 유출곡선지수, 하천까지 거리를 예측변수로 하여 하천 주변 침수 예상지역을 설명하기 위해 모형의 학습데이터로 100년 빈도 홍수위험 지도가 사용되었다. 연구 대상 지역은 격자로 변환하여 Bayesian Logistic 회귀분석을 수행하여 각 격자별로 홍수영향요인이 침수 여부를 설명하는 모형을 구축하였다. 최종적으로 모형을 통해 대상 지역 전체에 대하여 침수위험도를 확률적으로 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.