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Chi—squared Tests for Homogeneity based on
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Subject to Misclassification Error
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Abstract

In the analysis of categorical data subject to misclassification errors, the observed
cell proportions are adjusted by a misclassification probabilities and estimates of
variances are adjusted accordingly. In this case, it is important to determine the
extent to which misclassification probabilities are homogeneous within a population.
This paper considers methods to evaluate the power of chi-squared tests for
homogeneity with complex survey data subject to misclassification errors. Two cases
are considered: adjustment with homogeneous misclassification probabilities;
adjustment with  heterogeneous misclassification probabilities. To  estimate
misclassification probabilities, logistic regression method is considered.

Keywords : Heterogeneous misclassification probabilities, Logistic regression, Measurement
error, Stratified multistage sample survey

1. Introduction

In the analysis of categorical data, if misclassification errors exist, then estimated cell
probabilities may biased and standard Pearson chi-squared tests may have inflated true type 1
error rates. For some general background on the analysis of categorical data subject to
misclassification, see eg., Mote and Anderson (1965), Tenenbein (1972), Hochberg and

Tenenbein (1983) and Selen (1986). For specific work with misclassification problems in the

analysis of stratified multistage sample survey data, see, e.g., Rao and Thomas (1991).

Rao and Thomas (1991) discussed methods to adjust chi-squared test statistics for
goodness—-of-fit with complex survey data subject to misclassification probabilities are equal
across all units in a specified population.

This paper considers extensions of the Rao and Thomas (1991) method to tests of
homogeneity, following Scott and Rao (1981). In addition, this paper examines cases in which
misclassification probabilities may be heterogeneous within populations. For the latter case, I
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use estimated power curves to examine the extent to which heterogeneous misclassification
probabilities may have a serious impact on inference. The proposed methods are applied to the
data from the Dual frame National Health Interview Survey (NHIS) / Random-Digit-Dialing
(RDD) Methodology and Field Test Project. Research Triangle Institute (RTI) designed this
study and carried out data collection and initial data analysis.

2. Notation

Suppose that there are two independent populations and that two independent samples of
sizes #n; and #m,, respectively, are taken from these populations. In addition, suppose that
there is a categorical variable with J mutually exclusive and exhaustive classes. Define
Ty =(my,7p, ;) and piy=(pn,bi",pi) to be the vectors of J true and
observed proportions, respectively, corresponding to the J classes for populations 7=1,2. The
hypothesis of homogeneity of the two populations is Hy: m;= 7= m; against H,: mF 7,
where 7x; are vectors with the first (/—1) elements of 7;4, i=1,2; and =, is an unknown

vector. In addition, define Z be an observed class, Y the true class, X a predictor, S a
population label. Let P(Z=Fk| Y=7, X=2x,S=1) equal the probability that a unit reports
membership in class % conditional upon Y=j X=2x S=1i For convenience, I use the
notation P(Z=k| Y=7, X=x,S=1i) and P(Z=Fk| Y=j, X=x) interchangeably.

When misclassification errors exist, it can be important to determine the extent to which
misclassification probabilities are homogeneous within specified groups. For this paper, I will
say that misclassification probabilities are homogeneous within a population 7 if, for a given
vector of explanatory variables x, P{Z=k| Y=j X=2x) does not depend on x. In
addition, I will say that misclassification errors of a population 7 are homogeneous when the
population has homogeneous misclassification probabilities.

When misclassification probabilities are homogeneous, customary design based estimators of
the proportions of reported classifications will converge to

pir=A;, miys 2.1
where A;=[a;;] is a JXJ matrix with (j, £)th element a,; The (j, k)th element of
matrix A; is the probability, denoted P{Z=£k| Y=7 ), of a unit being classified into the
kth class when its true class is- J.

Suppose now that there are categorical explanatory variables and that the intersection of all
of the explanatory variable categories partitions the population ¢ into C groups. Then, for
group c¢ and population 7,

Picv =Ai Wiy (2.2)
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where p,+ 1s a vector of proportions of observed classification rates for group ¢ in
population i, 7,4+ a vector of true proportions and A ;. is the associated misclassification
matrix. More specifically, define A ,.=[a; ] to be a JxJ matrix with (j, &th element
@it Where a; 4=P,. (Z=k| Y=j) for group c¢ and population 7. The vector p 4 is
defined as
Picr=(My) X tgfcltl’ " t;,,lt])’

where U ,. is the subpopulation of persons in group c¢ and population i, M ;. is the size of
Ui and I, is a dummy variable that equals one if a person gives answer 4 and zero

otherwise. Similarly, the vector 7., is
- -1 ,
Tor=(M;) “;itatl, I tcg,,a”)

where &, equals one if a person’s true category is j and zero otherwise. By this definition,

the combined vector of observed proportions for population 7 is
iy = 211? icA il ic+ (2.3)
where R, =M;'M, and M; is the number of units in population 7 When
Aj==A;c= A, expression (2.3) is equal to A/ mit where
-1 , . . .
=M ( ;,16,1,---, t;f{&,j) and U, is the population 7.
Assume now that all A, are all nonsingular matrices and that are not all equal. Let

B.=(A;’) "' Then from expressions (2.2) and (2.3)

R = B RBibis 24
and Bj;=[b,. When all A, are equal, expression (24) simplifies to

mix=(A;" ) 'bis where pu=M (2 In,, 211"

3. Estimation of Cell Probabilities with Heterogeneous
Misclassification Rates

3.1 Point Estimation

For population Z, I assume the following design condition, quoted with minor modifications
from Shao (1996, p. 205-206).
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(D.1) The population has been stratified into L strata with N, clusters in the #kth stratum.
For the Ath stratum, #,=2 clusters are selected independently across the strata. These
first-stage clusters are selected with unequal probabilities p, and with replacement. Within
the 7th first-stage cluster in the #&th stratum, #», =1 ultimate units are sampled according
to some sampling methods with selection probabilities p,; from Ny units, j=1,", %,

i=1,--,m,, h=1,--,L. The total number of ultimate units in the population is
N, ”
N= ;l lehi and in the sample is n= Zl 2112 hi-
= & =, &

For convenience, I will replace the triple subscript (%#/) with the single subscript f in the
following expressions if it is not necessary to specify strata, clusters and ultimate units.

Under the design (D.1), let w,; be a unit-level survey weight. Then I have standard
estimators of R, and p,,
ﬁz’c: M,'_] M:‘c (31)

where M,-= tz w; and s; is the set of sample units in population 7 n = [Z w; and
€s; €5

S; 1s the set of sample units in group c¢ within population ¢ and

b\ic+= M;’c—l( tZ wd 5,0, ,EZS wd )" (3.2)

€5ic
Thus from expressions (3.1) and (3.2),

j\eic 5ic+= Mi—l( tZ wel gy, e, tezs' wt-[t])’z Eicy (3.3)

€5,

say. In addition, from expression (2.4) I have

/7\2' i+ = cgl B ic é\ic (3.4)

and the jth element of 7,4 equals ’7\1',,-= ﬁlBicj. e . where Bij.=(bicji, " bicjp is
&

the sth row of JXJ matrix B .
3.2 Variance Estimation

Assume that the matrices A, and thus B,, are known. Define a CJx1 vector

e;,,=(ey’,, e;c’). Note that e;. is a customary vector of sample ratios.
Consequently, I can use standard methods (as in, e.g., Shao, 1996) to compute a design-based
estimator of the variance of the approximate distribution of 2,~., V( e ;. ), say.

Also, note that expression (3.4) can be written as
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Tis=B,. e;. (35)
where B.. is a JXCJ matrix with jth row equal to a 1XCCJ vector
B;.j.=(Bj.,,B,cj.). Thus, an estimator of the variance of the approximate
distribution of 7,4 is

V(7i)=B,.V(e,.)B,.’ (3.6)

with jth diagonal element V( ?ri,-)=B,~.,~. V( e; )B ije

4. Logistic Regression—-Based Estimation of
Misclassification Matrices

Let X be a vector of explanatory variables and let Z be a binary random variable with

success probability #(x) when X takes value x. Then a logistic regression model is

ln[ lfrjrc(x) ] = By + Pf1x

where (8, 8)) is a fixed vector of coefficients.

For an empirical analysis in Section 6, I consider that there are only two classes, J=2.
Therefore, to estimate a,. j» the logistic regression method can be considered. In this case, a
logistic regression model is expressed by

gi(x,D;)=py+ B D;+ Bx (4.1)
where (8, 81, 8) is a fixed vector of coefficients, x is a vector of demographic or other
auxiliary variables and D; is an indicator variable indicating true category membership,
and equals one when a unit's true category is J and 0 otherwise. In addition,
g(x,D)=m[P(Z=Fk| Y=/, X=0)/{1-P(Z=k| Y=/, X=x)}].

When all x are categorical variables and they partition each population into C groups,
model (4.1) indicates that the probability of misclassification @, ;, of a unit that truly belongs
to class j can be estimated by

P.(Z=k| Y=j, X=x)=[1+ exp{ £;(x,D)}] "'exn{ 2;(x, Dy},
where  g;(x, D))= Bot Ple+ Bx and ( By, By, B) is a consistent estimator of the
vector ( By, B, B). Note that within group ¢ and population i, all units in the sample have
the same vector x. Thus, an estimator of A; is given by A, .=[ @, ] where

2i6'fk: pzc(szl Y=],X=x)
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5. Effect of Heterogeneous Misclassification Probabilities

When one considers heterogeneity of misclassification probabilities, the variances of adjusted

estimators of cell proportions may be inflated due to the variability of A, within population

7. If the bias of a biased test from incorrectly assuming their homogeneity is small relative to
the amount of inflation in the point variance estimator that arise from accounting for
heterogeneous misclassification probabilities, then one arguably might prefer the slightly biased
test for some -alternative hypothesis values. In this section, I will examine powers from

unbiased and biased tests that do and do not account of heterogeneity of A ;.
5.1 Asymptotic Distribution

Before examining powers, I first look at the asymptotic properties of ?r,-+. The ’7\r,~+ in
expression (35) is a linear function of éi. and 2,~. is a vector of sample ratios.
Therefore, if there are some conditions available under which 2,-. is a consistent estimator
of Ric=Mi_lMic and its asymptotic distribution follows normal distribution, then under the
same conditions ?r,v+ is a consistent estimator of m;;+ and nyz( /7\1'{— ;) converge in
distribution to N;_(0, V), a (J—1)-variate normal distribution with mean 0 and

covariance matrix V,; where x; and 7 are vectors with the first (J—1) elements of ;.

and T4 in expression (2.4) and (3.5).

Under design (D.1), Shao (1996) gives conditions for consistency and asymptotic normality
for design-based estimators of nonlinear functions of population totals, e.g., design-based
sample ratio for estimating population ratio.

For a Wald-type test, I will now add the following condition.

(C.1) The matrix #n;{ V( 7;)} is a consistent estimator of V,; where V( 7;) is the

upper (J—1) X (J—1) submatrix of V( 7,:) in (36).

Then under design (D.1), condition (C.1) and additional regularity conditions, the Wald test
statistics for homogeneity, Hj: ;= my= 7y,
thez( /7\1'1_ /7}2), V_l( /7\1'1_ /7\1'2), (51)
where V= V( ?rl )+ V( ?rz ), is asymptotically distributed as xzj_l, a chi-square random
variable on (J—1) degrees of freedom under Hy: m = my=m, for sufficiently large #;

1=1.2.
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For methods to obtain design-based consistent estimators of variances, see e.g., Krewski
and Rao (1981) and Shao (1996).

5.2 Power Evaluation

For any nonzero D,= m— 7y, the test statistic the is distributed asymptotically as
xzj_l(/i), a chi-square random variable on (J—1) degrees of freedom with noncentrality

parameter A, where A=D, V7!'D,/2 and V= V(7)+ V( 7,). Thus the power of the
Wald test in (5.1) is

1= Bhe= Pr(X% > 2r-1.a| D) = Pr(Wy_y > 210 | De)
where W,_; is distributed as xzj_l(ﬂ) and xzj_l,a is the upper ath quantile of xzj_l. When
Hy: my= my=m is true, the Wald test in (5.1) achieves the nominal type I error rate a.
Now assume A ;=--=A ;= A; and assume that A; are known. Then for known A;

the estimator of 7;; is

Ti=(A7 ) b (5.2)
where 13,-+ are observed proportions. Its variance is estimated by
VOT)=(A; )TV hAT
From a sample obtained by design (D.1), 5, = M,-_l( ;s‘lw,lﬂ,-", ;Siw,ltj)' for ith

population, i=1,2. As with e;., p;+ is a vector of sample ratios and V( $,.) is
obtained by the same methods as /V( 2,-. ). Then the Wald test statistic for homogeneity,
Hy my=ny=my, is

X=(T= T T (- T (5.3)
where V= ¥( ?’1)+ ( ;r\z); 7 is a vector with the first (J—1) elements of 7" ;4

and V( ;?,') is a upper (J—1)x(J—1) submatrix of V¢ ?,-J,). The power of the Wald
test in (5.3) is

1= Bro=Pr(X%> -1a| D =Pr(Wi_1> 25 1.1 D)
where W;-, is  distributed as 1A A*=(D,+B)' (V) "D,+ B)/2;
V=W ;r\*l)+ W ?2); B=b,— by, and b;= E( 7 )—n. Here E denotes expectation

operator with respect to design (D.1).

When misclassification probabilities are heterogeneous, b; is not zero. Due to this bias in

;r\*i, the power 1— 8, under Hy: my= my=my; may be different from the nominal type I
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error rate @ and the Wald test statistic in (5.3) gives a biased test.
6. Application to Health Survey Data

6.1 Dual Frame NHIS/RDD Data

The U.S. National Health Interview Survey (NHIS) is a national level face-to-face survey
carried out in all 50 states of United States. For some applications, sample sizes were
considered insufficient to evaluate state level estimates.

The purpose of the Dual Frame NHIS/RDD Methodology and Field Test was to evaluate
the feasibility of supplementing NHIS face-to-face interviews with Random-Digit-Dialing
(RDD) telephone interviews. This study was conducted in two states, here labeled States A
and B. These states were selected for the study due to their relatively large NHIS sample
sizes (Biemer, 1997). In NHIS data, the initial interview was conducted face-to-face and the
reinterview was conducted by telephone. For the RDD data, both interviews were conducted
over the telephone.

From the questionnaire used for NHIS and RDD, I selected question Gl, ‘‘Are any firearms
now kept in or around your home?’’, with possible responses ‘‘yves’’ or ‘‘no’’. The hypothesis
in which I are interested is Hy: P(Gl= Yes | State A)— P(Gl= Yes | State B)=0. 1

combined NHIS and RDD data; and for purposes of this analysis I considered the second
interviews to give the true responses.

6.2 Effect of Heterogeneous Misclassification Probabilities

To examine whether there are any auxiliary variables associated with probability of saying
‘'ves’’ on question Gl on the second interview, I estimated the coefficients for the logistic
regression model in (4.1). Some potentially important explanatory variables are a person’s
state of residence, gender, age and second interview modes; specific explanatory indicator
variables are reported in Table 6.1. Exploratory analysis led to the final model coefficient
estimates reported in Table 6.2. Based on Table 6.2, I constructed eight groups of respondents
based on the combination of binary classification by gender, mode and Age40. For each group,
estimates A ; are obtained for both States A and B, i=1,2, ¢=1,-,8, for the combined
data. For the NHIS and RDD data, there are only four groups within each state, that is,

c=1,,4. 1 considered the estimates as known to evaluate powers. The estimator of

variance of e;., V( e;.), was obtained by the linearization method (StataCorp, 1997,

Reference P-Z, p. 418). Table 6.3 shows point estimates of ?r,- and their standard errors,

\ V( ?r,'), for the NHIS and combined data, respectively.
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Table 6.1 Explanatory indicator variables for the logistic regression model.

Variable Name Group Indicated

(Baseline Gender) (Female)

Male Male

(Baseline Interview Mode) (NHIS)

RDD RDD

Fire2 Second Interview of Gl = Yes
Fire2_RDD Interaction between Fire2 and RDD
(Baseline Age) age € [18, 39] years old

Agedl age = 40 years old

Aged(_Fire2 Interaction between Age40 and Fire2

Table 6.2 Logistic regression coefficient point estimates, standard errors, approximate 95%

confidence interval and p-values for Hy: 8,=0

Predictor B; se([;’;) p-value ( B, %kU)
Constant -4.0272 0.3062 0.000 (-4.6278, -3.4266)
Male 0.4805 0.1812 0.008 ( 0.1251, 0.8359)
RDD -0.5973 0.2796 0.033 (-1.1457, -0.0488)
Fire2 5.8095 0.3328 0.000 ( 5.1568, 6.4622)
Fire2_RDD 1.4697 0.3843 0.000 ( 0.7159, 2.2235)
Aged0 1.5805 0.3137 0.000 ( 0.9654, 2.1957)
Aged0_Fire2 -1.6857 0.3676 0.000 (-2.4066, -0.9648)

Table 6.3 Estimates of cell proportions

and their standard errors under heterge-

neous misclassification probabilities.

Table 6.4 Estimates of cell proportions and
their standard errors under homogeneous
misclassification probabilities.

Data Point State A State B Data Point State A State B
Estimate Estimate

NHIS 7 05060  0.2713 NHIS o 0.4837  0.2857
se(7) 00467  0.0217 se( 7)) 00283 00197

Combined 7 04679  0.2709 Combined 7°; 04573 0.2779
se(7) 00267 00163 se( 7°;) 00186  0.0153

For homogeneous misclassification probabilities, each a; j in matrix A; is estimated by

A

a;, ik

-1
M,‘j tEZ w,[,k
S
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Power of a Wald Test : NHIS Data
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Figure 6.1 Power of a Wald test statistic with one degree of freedom for the NHIS data
allowing for possible unequal misclassification probabilities.

Power of a Wald Test : Combined Data
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Figure 6.2 Power of a Wald test statistic with one degree of freedom for the Combined data
allowing for possible unequal misclassification probabilities.

where Mi,: ; w; and s is the set of sample units in belonging to category ;j in the
Sij

second phase within population ¢ I, equals one if a person gives answer £ in the first

phase and zero otherwise. I consider these estimates A; as known. The variance of p; is

estimated by the linearization method. Table 6.4 reports point estimates of ;r\*,» and their
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standard errors, V( ?,-), for the NHIS and combined data, respectively. The bias of

% >,
T 11— T yl18

S “x
B=b1_b2={E( Vg 1)_E( T 2)}_(71'1_7[2)
and is estimated by
“x ~ ~
B=(7n,— ?2)—( Ty — Ty)

since 7, is an unbiased estimator of ;. These estimated biases are used to evaluate the

power of a test based on an incorrect assumption of homogeneous misclassification
probabilities when it is not true. Figure 6.1 and Figure 6.2 show powers from tests adjusted
with homogeneous (dotted line) and with heterogeneous (solid line) misclassification
probabilities. Figure 6.1 shows powers from the NHIS data and Figure 6.2 shows powers from
the combined NHIS and RDD data. Both plots display a similar pattern.

In both graph, the test based on assuming A ;= A, appears to have a positive bias, and

the type I error rate is inflated accordingly. On the other hand, the inflation of variance due
to accounting for heterogeneity of misclassification probabilities is nontrivial relative to the
biasedness caused by incorrectly assuming their equality. The loss of power due to accounting
for heterogeneous misclassification probabilities appears to be more severe for the NHIS data.

For the RDD data the difference between the two power curves is relatively small when it
is compared to the NHIS and combined data, even though there is some positive biasedness
exhibited when homogeneity is assumed.

7. Conclusions

I discussed chi~squared tests for homogeneity based on complex sample survey data subject
to misclassification errors. I considered estimation based on either homogeneous or
heterogeneous misclassification matrices. In addition, I evaluated power curved under
assumption that the misclassification probabilities might be heterogeneous. Wald tests are used
for power evaluation. I modeled misclassification mechanisms with logistic regression.

The proposed methods were applied to data from the Dual Frame National Health Interview
Survey (NHIS)/ Random-Digit-Dialing (RDD) Methodology and Field Test Project conducted
by Research Triangle Institute (RTI) in U.S..

The resulting power curves showed that the inflation of variance relative to the biasedness
caused by incorrectly assuming their equality. Therefore, the loss of power of that arises in
accounting for the heterogeneity of misclassification probabilities is of serious concern.

In this discussion, I assumed the coefficients of logistic regression and the heterogeneous
misclassification matrices were known. However, in practical cases, these matrices may be
estimated with nontrivial error. One could extend this ideas and method for these estimation
errors.
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