• Title/Summary/Keyword: LOCAL DYNAMIC STABILITY

Search Result 80, Processing Time 0.025 seconds

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

Dynamic Analysis of Precast Concrete Large Panel Structures with Horizontal Joints (수평 접합부를 고려한 프리캐스트 대형판 구조물의 동적 해석에 관한 연구)

  • 정일영;송진규;강해관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.249-257
    • /
    • 1996
  • Dynamic Analysis of Precast Concrete Large Panel Structures with Horizontal Joints The damage in precast large panel structures subjected to destructive earthquakes is generally localized in the joints. Particularly, the horizontal joints influence on the stability and integrity of the overall structure. In this research a dynamic analysis was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. It is capable of simulating the behavior of precast concrete structures using the mathematical model. As a result of the dynamic parametric study for the case of 0.12g peak base accelerations, it is found that all joints behave elastically for sliding and opening and that all forces are well distributed without excessive local concentration on my horizontal joints.

  • PDF

Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography (지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구)

  • Lee, Soon-Hwan;Kim, Sun-Hee;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

A Molecular Dynamics Study of Thermophysical Properties and Stability of Nanoscale Liquid Thread (분자동역학 해석을 이용한 액체 극미세사의 열역학적 물성과 안정성 연구)

  • Kim, Byeong-Geun;Choi, Young-Ki;Kwon, Oh-Myoung;Park, Seung-Ho;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1366-1371
    • /
    • 2003
  • Molecular dynamics (MD) simulations are conducted to investigate the thermophysical characteristics and the stability of liquid threads for various conditions. A cylindrical thread in the simulation domain is made of Lennard-Jones molecules. The surface tension of liquid threads can be determined from local densities, local normal and transverse components of the pressure force. In order to understand the effects of thread radii on surface tensions, the Tolman equation is modified on the basis of the cylindrical coordinates for prediction of surface tensions. Surface tensions calculated from the MD simulation agree with the prediction from the modified Tolman equation. In addition, surface tensions decrease linearly with increasing system temperature. For a binary system, the surface tension decreased linearly compared to that for a pure system with increasing binary ratio of solute molecules which have relatively large value of the affinity coefficient. For a fixed binary ratio, the surface tension increased slightly with the affinity coefficient and the maximum value appear around where the affinity coefficient is 1.5 and decreased rapidly for upper value of 1.5. In addition, the critical wavelengths of perturbations are proven to be directly proportional to the equimolar dividing radii of the liquid threads.

  • PDF

Design of a Fuzzy-Model-Based Controller for Nonlinear Systems (비선형 시스템을 위한 퍼지 모델 기반 제어기의 설계)

  • 주영훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.605-614
    • /
    • 1999
  • This paper addresses analysis and design of a class of complex single-input single-output fuzzy control systems. In the proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Therefore, the globally stable fuzzy controller is designed without finding a common Lyapunov matrix. and shows improved perfonnance and tracking results by taking the advantages of fuzzy-model-based control theory and sliding mode control theory. Furthennore, stability analysis is conducted not Ibr the fuzzy model but for the real underlying nonlinear system. Two numerical examples are included to show the effcctiveness and feasibility of the proposed fuzzy control method.

  • PDF

Analysis of dynamic performance of redundant manipulators using the concept of aspects

  • Chung, W.J.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1664-1670
    • /
    • 1991
  • For kinematically redundant manipulators, conventional dynamic control methods of local torque optimization showed the instability which resulted in physically unachievable torque requirements. In order to guarantee stability of the null space vector method which resolves redundancy at the acceleration level, Maciejewski[1] analyzed the kinetic behavior of homogeneous solution component and proposed the condition to identify regions of stability and instability for this method. 'In this paper, a modified null space vector method is first presented based on the Maciejewski's condition which is a function of a manipulator's configuration. Secondly, a new control method which is based on the concept of aspects is proposed. It was shown by computer simulations that the modified null space vector method and the proposed method have a common property that a preferred aspect is preserved during the execution of a task. It was also illustrated that both methods demonstrate a drastic reduction of torque loadings at the joints in the tracking motion of a long trajectory when compared with the null space vector method, and thus guarantee the stability of joint torque.

  • PDF

Stability Analysis of a Discontinuous Free Timoshenko Beam Subjected to a Controlled Follower Force (불연속 단면을 갖고 제어 종동력을 받는 자유 Timoshenko보의 안정성 해석)

  • 류봉조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.478-487
    • /
    • 1991
  • In this study, dynamic stability of discontinuous free Timoshenko beam, barring a concentrated mass, under constant follower force is considered. Governing differential equations are derived based on the extended Hamilton's principle and finite element method is applied for numerical analysis. Conclusions of the study are as follows : (1) Without force direction control, (i) the critical follower force at instability is increased with concentrated mass regardless of discontinuity. (ii) the minimum critical follower force is located in the vicinity of discontinuity position .xi.$_{d}$=0.75. (iii) at mass location .mu. .leq.0.5 the force at instability is decreased as magnitude of concentrated mass is increased but, at .mu. .geq. 0.5 the force is increased as the mass is increased. (2) With force direction control, (i) shear deformation parameter S contributes insignificantly to the force at instability when S>10$^{[-993]}$ (ii) maximum critical follower force can be obtained for the discontinuity location .xi.$_{d}$=0.25. (iii) the critical follower force is increased as magnitude of concentrated mass .alpha. is increased at mass location .mu. .geq.0.4, but is increased, .mu ..leq.0.4.4.

The Study on Seismic Stability Evaluation Model for Rock Foundation of Nuclear Power Plant (원전 기초지반의 지진안정성 평가 모델 연구)

  • Hwang, Seong-Chun;Jang, Jung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose ol this study Is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Dynamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times ol structure depth.

Vibration Reduction for a Local Operation Panel Mounted by Wire Rope Isolator (Wire Rope Isolator 마운팅 수동 조작 패널의 진동 저감)

  • Kim, Chae-Sil;Kim, Dong-Il;Heo, Jong-Dae;Hwang, Jae-Deok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.127-133
    • /
    • 2014
  • This paper reviews a finite element model of a wire rope isolator (WRI) via an experimental comparison test. A local operation panel (LOP) mounted on a WRI is modeled using a finite element method. Mode analyses and harmonic analyses are conducted while varying of the thickness of the rope for the WRI. A feasible WRI can be selected considering the reduction of the vibration and the total weight of the LOP system.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF