• 제목/요약/키워드: LOCA Break Size

검색결과 13건 처리시간 0.02초

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

An Application of Realistic Evaluation Methodology for Large Break LOCA of Westinghouse 3 Loop Plant

  • Choi, Han-Rim;Hwang, Tae-Suk;Chung, Bub-Dong;Jun, Hwang-Yong;Lee, Chang-Sub
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.513-518
    • /
    • 1996
  • This report presents a demonstration of application of realistic evaluation methodology to a posturated cold leg large break LOCA in a Westinghouse three-loop pressurized water reactor with 17$\times$17 fuel. The new method of this analysis can be divided into three distinct step: 1) Best Estimate Code Validation and Uncertainty Quantification 2) Realistic LOCA Calculation 3) Limiting Value LOCA Calculation and Uncertainty Combination RELAP5/MOD3/K [1], which was improved from RELAP5/MOD3.1, and CONTEMPT4/MOD5 code were used as a best estimate thermal-hydraulic model for realistic LOCA calculation. The code uncertainties which will be determined in step 1) were quantified already in previous study [2], and thus the step 2) and 3) for plant application were presented in this paper. The application uncertainty parameters are divided into two categories, i.e. plant system parameters and fuel statistical parameters. Single parameter sensitivity calculations were performed to select system parameters which would be set at their limiting value in Limiting Value Approach (LVA) calculation. Single run of LVA calculation generated 27 PCT data according to the various combinations of fuel parameters and these data provided input to response surface generation. The probability distribution function was generated from Monte Carlo sampling of a response surface and the upper 95$^{th}$ percentile PCT was determined. Break spectrum analysis was also made to determine the critical break size. The results show that sufficient LOCA margin can be obtained for the demonstration NPP.

  • PDF

매우 작은 규모의 냉각재 상실 사고 동안 잔열 제거와 운전자의 개입 (Decay Beat Removal and Operator's Intervention During A Very Small L()CA)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • 제16권1호
    • /
    • pp.11-17
    • /
    • 1984
  • 매우 작은 규모의 냉각재 상실 사고후($\leq$0.05ft$^2$) 어떤 일이 일어나는 가를 더 잘 이해하기 위해 고리 1호기에 대한 샘플 계산을 수행하였다 깨진 크기가 0.006 ft$^2$ 보다 큰 사고에 대해서는 냉각재 상실이 보충되는 양을 초과한다. 0.008 ft$^2$ 보다 큰 깨진 크기에 대해서는 잔열은 깨진 곳을 통해 완전히 제거된다. 이와 같은 결과에 비추어 고리 1호기는 매우 작은 규모의 냉각재 상실 사고의 전 영역에 걸쳐 비교적 안전하다고 결론지었다. 하지만, 900MWe 나 1200MWe 를 가진 원자로에 있어서, 어떤 깨진 크기에 대해서는 이 사고가 주의깊게 고려되어야 한다. 자연 순환에서 pool boiling 으로 또는 pool boiling에서 자연 순환으로 천이할때, 특별히 운전자와 안전 분석에 문제점을 남긴다. Primary pump shutoff, HPI pump shutoff, break isolation, opening relief valve의 운전자 간섭에 대해서도 논의 되었다. Shutoff 후 HPI pump의 연속적인 운전은 primary system의 건전성을 위협하지 않는다는 것이 증명되었다.

  • PDF

Loss of Coolant Accident Analysis During Shutdown Operation of YGN Units 3/4

  • Bang, Young-Seok;Kim, Kap;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.17-28
    • /
    • 1999
  • A thermal-hydraulic analysis is conducted on the loss-of-coolant-accident (LOCA) during shutdown operation of YGN Units 3/4. Based on the review of plant-specific characteristics of YGN Units 3/4 in design and operation, a set of analysis cases is determined, and predicted by the RELAP5/MOD3.2 code during LOCA in the hot-standby mode. The evaluated thermal-hydraulic phenomena are blowdown, break flow, inventory distribution, natural circulation, and core thermal response. The difference in thermal-hydraulic behavior of LOCA at shutolown condition from that of LOCA at full power is identified as depressurization rate, the delay in peak natural circulation timing and the loop seal clearing (LSC) timing. In addition, the effect of high pressure safety injection (HPSI) on plant response is also evaluated. The break spectrum analysis shows that the critical break size can be between 1% to 2% of cold leg area, and that the available operator action time for the Sl actuation and the margin in the peak clad temperature (PCT) could be reduced when considering uncertainties of the present RELAP5 calculation.

  • PDF

영광3, 4호기 비상운전지침용 원자로냉각재펌프 정지전략을 위한 소형냉각재상실사고 분석 (Small Break LOCA Analysis for RCP Trip Strategy for YGN 3&4 Emergency Procedure Guidelines)

  • Seo, Jong-Tae;Bae, Kyoo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.203-215
    • /
    • 1995
  • 소형냉각재 상실사고시 원자로냉각재펌프( RCP )의 지속적인 운전은 원자로냉각재의 불필요한 누출을 초래하여 심각한 노심노출 및 이에따른 핵연료 손상을 야기시킬 수 있다. TMI 사고 후 미국 NRC의 요구에 따라 CE형 발전소 사용자 단체에서는 “T2/L2”라는 RCP 트립전략을 개발하여 CE형 발전소에 적용 가능토록 일반비상운전지침서에 반영하였다. 상기 T2/L2 RCP 트립전략은 사고후 원자로 냉각재 계통의 압력이 감소하여 RCP 트립설정치에 도달하면 처음 두대의 RCP를 우선 정지시키고, 사고가 LOCA임이 확인되면 나머지 두대의 RCP를 정지시키는 방식을 채택하고 있다. 본 논문에서는 영광3, 4호기의 RCP 트립설정치를 분석, 선정하고 T2/L2 전략의 안전운전양상을 입증하였다 분석결과, 최악의 파단크기로 밝혀진 0.15 ft$^2$의 고온관 파단 LOCA 영광3, 4호기 RCP 트립설정치는 가압기 압력 1775 psia로 나타났으며, 운전원이 마지막 두대의 RCP를 트립시키지 못하였을 경우 혹은 최악의 시점에서 정지시켰을 경우에도 영광3, 4호기의 노심냉각능력은 확보될 수 있음이 확인되었다. 또한 영광3, 4호기의 RCP 트립전략은 미국 NRC가 요구하는 최대 핵연료피복재온도 관점에서의 10 CFR 50.46 요구조건과 운전원 조치시간 관점에서의 ANSI 58.8 요구조건도 충분히 만족함이 판명되었다 따라서, 1775 psia의 RCP 트립설정치를 사용한 영광3, 4호기의 T2/L2 RCP 트립전략은 사고시 운전원에게 향상된 운전지침을 제공할 수 있을 것으로 판단된다.

  • PDF

RCD success criteria estimation based on allowable coping time

  • Ham, Jaehyun;Cho, Jaehyun;Kim, Jaewhan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.402-409
    • /
    • 2019
  • When a loss of coolant accident (LOCA) occurs in a nuclear power plant, accident scenarios which can prevent core damage are defined based on break size. Current probabilistic safety assessment evaluates that core damage can be prevented under small-break LOCA (SBLOCA) and steam generator tube rupture (SGTR) with rapid cool down (RCD) strategy when all safety injection systems are unavailable. However, previous research has pointed out a limitation of RCD in terms of initiation time. Therefore, RCD success criteria estimation based on allowable coping time under a SBLOCA or SGTR when all safety injection systems are unavailable was performed based on time-line and thermal-hydraulic analyses. The time line analysis assumed a single emergency operating procedure flow, and the thermal hydraulic analysis utilized MARS-KS code with variables of break size, cooling rate, and operator allowable time. Results show while RCD is possible under SGTR, it is impossible under SBLOCA at the APR1400's current cooling rate limitation of 55 K/hr. A success criteria map for RCD under SBLOCA is suggested without cooling rate limitation.

PREDICTION OF SEVERE ACCIDENT OCCURRENCE TIME USING SUPPORT VECTOR MACHINES

  • KIM, SEUNG GEUN;NO, YOUNG GYU;SEONG, POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.74-84
    • /
    • 2015
  • If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.

INTEGRAL BEHAVIOR OF THE ATLAS FACILITY FOR A 3-INCH SMALL BREAK LOSS OF COOLANT ACCIDENT

  • Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Euh, Dong-Jin;Kim, Yeon-Sik;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.199-212
    • /
    • 2008
  • A small-break loss of coolant accident (SB-LOCA) test with a break size equivalent to a 3-inch cold leg break of the APR1400 was carried out as the first transient integral effect test using the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). This was the first integral effect test to investigate the integral performance of the test facility and to verify its simulation capability for one of the design-basis accidents. Reasonably good thermal hydraulic data was obtained so that an integral performance of the fluid sub-systems was identified and control performance of the ATLAS was confirmed under real thermal hydraulic conditions. Based on the measured data, a post-test calculation was carried out using the best-estimate thermal hydraulic safety analysis code, MARS 3.1, and the similarity between the expected and actual data was investigated. On the whole, the post-test calculation reasonably predicts the major thermal hydraulic parameters measured during the SB-LOCA test. The obtained data will be used to enhance the simulation capability of the ATLAS and to improve an input model of the ATLAS for simulation of other target scenarios.

고리 1호기 소형파단 냉각제 상실사고에 의해 개시된 가상 노심용융 사고 해석 (Severe Accident Sequence Analysis - Part 1: Analysis of Postulated Core Meltdown Accident Initiated by Small Break LOCA in Kori-1 PWR Dry Containment)

  • Jong In Lee;Seung Hyuk Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권3호
    • /
    • pp.141-154
    • /
    • 1984
  • 고리 1호기의 소형파단냉각재 상실사고에 의해 개시된 중대사고 유형과 그 현상에 대할 분석이 제시되었다. 본 해석에서는 KAERI에서 기존 전산코드의 수정.보완된 MARCH 전산코드가 사용되었다. 특히 고리 1호기의 소형파단 LOCA 해석시 수소 거동과 중기과압에 대한 평가 및 그 응답성에 중점을 두고 검토되었으며, 2-loop 발전소 데이타 분석 및 debris-Water 상호작용 모델에 대한 비교 분석이 수행되었다. 제 1부 중대 사고유형 분석결과, 저농도에서 H$_2$ burning이 이루어지는 경우 계속적인 수소 생성으로 인해 반복 수소 spike가 야기 되나, 격납용기 설계압력치 보다낮게 예측되었다. 또한 debris/water 상호작용시 core debris의 입자크기는 첨두압력의 크기에 미치는 영향은 미세하나 첨두압력의 발생시점은 dryout모델사용에 의해서 상당히 지연시키게 되었다. 완전한 노심용융 사고시 수소연소와 증기과압으로부터 예측된 격납용기 최대압력은 격납용기 건전성에 심각한 위협을 초래하지 않는 것으로 나타났다.

  • PDF