• Title/Summary/Keyword: LNG-Tank

Search Result 405, Processing Time 0.026 seconds

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands (2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과)

  • Jeon, Se-Jin;Seo, Hae-Keun;Yang, Jun-Mo;Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

A Study on the Method for Measuring the live Calorific Value of LNG in storage tank using LNG Densitometer (LNG 밀도계를 이용한 저장 탱크 내 LNG 발열량 실시간 측정방법에 관한 연구)

  • Ha, Young-Cheol;Lee, Seong-Min
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • The low caloric LNG, which didn't meet the gas interchangeability of Korea, has been imported from 2005 winter season. Amount of this LNG imports has been increased from year to year. In the near future, very low caloric LNG (calorific value ${\leq}$ 9,500 kcal/$Nm^3$) such as CBM, Shale LNG will be imported large amounts. For this reason, we need a method for monitoring live calorific values(CV) of LNG in each storage tank to supply gasified LNG with interchangeable CV at LNG receiving terminal. This study was conducted to develope the method for measuring the live CVs of LNG in each storage tank using LNG densitometer. For this purpose, the accurate correlation between CV and density of LNG was derived and the uncertainty of this method was evaluated and also the measuring system for CVs was constructed at LNG receiving terminal. To verify this method, the results of measurement using this method were compared with the field data of LNG analysis and the results showed that the deviations were 0.17~0.47%.

Numerical Analysis of Behavior of Ground Near LNG Tank Foundation Under Scenario of LNG Leakage (LNG 탱크에서 천연가스 유출시 얕은 기초 주변 지반거동의 수치해석적 분석)

  • Kim, Jeongsoo;Kim, Youngseok;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Recently, the use of natural gas has steadily increased due to its economical advantage and increased demand of clean energy uses. Accordingly, construction of LNG storage tanks is also increased. Secure of the stability of LNG tanks storage requires high technology as natural gas is stored in a liquid state for efficiency of storage. When a cryogenic LNG fluid leaks on ground due to a defect in LNG tank, damage is expected to be significant. Many researchers evaluated the critical and negative effects of LNG leakage, but there is limited research on the effect of cryogenic fluid leakage on the ground supporting LNG tanks. Therefore, in this study, the freezing expansion of the ground during cryogenic LNG fluid leakage was evaluated considering various outflow situations and ground conditions. The LNG leakage scenarios were simulated based on numerical analyses results varying the surcharge load, temperature boundary conditions, and soil types including freeze-sensitive soil. Consequently, short and long term ground temperature variations after LNG leakage were evaluated and the resulting ground behavior including vertical displacement behavior and porosity were analyzed.

A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System (LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

Third Wave of Gas Management System in LNG Carrier - VaCo System (LNG 운반선에서의 신개념 증발 가스 처리 시스템 - VaCo 시스템)

  • Choi, Jung-Ho;Yoo, Hong-Sung;Yoo, Kyung-Nam;Heo, An;Lee, Dou-Yeong;Lyy, Sung-Kak
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.89-93
    • /
    • 2007
  • The Boil-off gas (BOG) generation during the voyage is inevitable since Natural Gas (NG) in normally liquefied below -160 degree C in atmosphere condition and small heat ingress due to relatively hot outside keeps evaporating continuously. The one of major issue in LNG carriers is to handle generated BOG from cargo tank. The generated BOG affects to increase the cargo tank pressure and Gas Management System (GMS) for LNG carriers is closely related to cargo tank pressure maintenance. Economically, BOG is generally used as fuel in LNG carrier. Newly developed GMS for LNG carrier in boiler propulsion system, VaCo System, not only accomplish automatic control in GMS but also ensure safer operation.

  • PDF

A Study on the Three-Dimensional Steady State Temperature Distributions and BOR Calculation Program Development for the Membrane Type LNG Carrier (Membrane Type LNG선의 3차원 정상상태 온도분포 및 BOR 계산 프로그램 개발에 관한 연구)

  • 이정혜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.140-149
    • /
    • 1999
  • This study is on the development of the computer program that calculates a 3-D hull temperadistribution and analyzes BOR(Boil off rate) to be important to the heat design of a membrane type LNG carrier. The quarter of a tank is taken as an calculation model. And the thermal conductivity of insulation is assumed to be the function of a temperature. In the present steady state calculation, the temperature of LNG in a cargo tank is assumed to be -$162^{\circ}C$ and the air temperature of a cofferdam, to be +$5^{\circ}C$. The lowest air temperature in compartments is calculated as $21.39^{\circ}C$ under the USCG condition ($T_{air}=-18^{\circ}C,\;T_{sw}=O^{\circ}C)$ and B.O.R value is O.0977%/day under the maximum boil-off condition, IMO IGC ($T_{air}=45^{\circ}C,\;T_{sw}=32^{\circ}C$), which satisfies the requirement by KOGAS. The calculated temperature distribution over tank panels at each condition is maximum 3% less than GTT's results. From the results of this study, it can be concluded that the present design of LNG cargo tank satisfies the requirement by KOGAS.

  • PDF

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane (Pilot LNG저장탱크 멤브레인 실 변형 거동 측정)

  • Kim Y.K.;Yoon I.S.;Oh B.T.;Rong S.H.;Yang Y.M.;Kim J.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.27-31
    • /
    • 2005
  • The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature and pressure changes. It is very important to measure their thermal strains under LNG temperature by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data.

  • PDF

The Measurement of Membrane Deformation Behavior in Kogas Pilot LNG Storage Tank by the use of Mechanical/Electrical Sensor (I) (기계적/전기적 측정 센서를 이용한 Kogas Pilot LNG 저장탱크 멤브레인 변형 거동 측정(I))

  • Kim Y.K.;Hong S.H,;Oh B.T.;Yoon I.S.;Kim J.H.;Kim S.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.13-17
    • /
    • 2003
  • A membrane unit for Liquefied Natural Gas (LNG) storage tank is a structural member which is designed specifically for preventing undesirable LNG leakage. Membrane units have to endure gas and liquid pressures by LNG and thermal stresses by the contact with cryogenic liquid of $-162^{\circ}C$. It is of importance to assure the strengths of membrane by experimental stress analysis under the temperature of LNG. In this paper, we proposed measurement system using commercial electrical strain gage and mechanical extension meter designed for this study.

  • PDF