• Title/Summary/Keyword: LNG Flame

Search Result 34, Processing Time 0.024 seconds

An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Chung, Jin-Do;Han, Ji-Woong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Numerical Analysis of Performance and Emission Characteristics according to Equivalence Ratio and Ignition Time of LNG Engine (LNG 엔진에서 당량비와 점화시기에 따른 엔진의 성능과 배기 특성에 관한 수치 해석적 연구)

  • Lee, Ziyoung;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.49-51
    • /
    • 2015
  • In this research, engine performance and emission variation according to equivalence ratio and ignition time is calculated by validated analysis model. LNG engine ignite by spark plug and spark ignition modeled using DPIK model and G-equation that modeled initial flame surface called kernel and velocity and position of flame front. Engine pressure and emission was validated with experimental data.

  • PDF

CFD Analysis and Explosion Test of a Crankcase Relief Valve Flame Arrester for LNG-fuelled Ships (LNG 연료 추진 선박용 크랭크실 릴리프 밸브 화염방지기의 유동해석 및 폭발시험)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Dong Keon;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Growing concerns about air pollution have led to increased demand for liquefied natural gas (LNG)-fuelled ships that have crankcases equipped with explosion relief valves to relieve excessive crankcase pressures and stop the flames emitted from the crankcase. The results of a computational fluid dynamics (CFD)-based feasibility analysis of the crankcase relief valve flame arrester design conducted using ANSYS CFX V14 showed that the inlet and outlet relief valve temperatures differed by $350-700^{\circ}C$. An explosion test was performed based on European standard EN14797 to evaluate the flame transmission and mechanical integrity of the valve. No flame transmission from the pressure vessel to the exterior was detected, and the mechanical integrity of the valve was confirmed. Thus, the relief valve components were found to be safe from the viewpoint of fracture.

Numerical Study on the Thermal NOx Reduction by Addition of Moisture in LNG Flame (가습 공기의 LNG 화염 Thermal NOx 저감의 수치 해석적 연구)

  • Shin, Mi-Soo;Park, Mi-Sun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.837-842
    • /
    • 2014
  • A computer program is developed for the prediction of NO generation by the addition of water moisture and water electrolysis gas in LNG-fired turbulent reacting flow. This study is the first part to deal with the moisture effect on NO generation. In this study, parametric investigation has been made in order to see the reduction of thermal NO as a function of amount of moisture content in a LNG-fired flame together with the swirl and radiation effect. First of all, calculation results show that the flame separation together with the NO concentration separation are observed by the typical flow separation due to strong swirl flow. With a fixed amount of air, the increased amount of water moisture from 0 to 10% by 2% interval shows the decrease of NO concentration and flame temperature at exit are from $973^{\circ}C$ and 139 ppm to $852^{\circ}C$ and 71 ppm. The radiation effects on the generation on NO appears more dominant than swirl strength over the range employed in this study. However, for the strong swirl flow employed in this study, the flow separation cause the relatively high NO concentration observed near exit after peak concentration in the front side of the combustor.

The combustion characteristics of LNG-Oxygen Enriched Combustion in swirl flame. (LNG-산소부화 선회류연소특성)

  • Kim, Kyung-Lae;Kim, Hyouck-Ju;Ryu, Jeong-In
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.41-47
    • /
    • 2002
  • Oxygen has been used extensively in various industries for many years. Despite earlier successful attempts to use oxygen in industrial combustion furnaces, its full theoretical researches have only recently begun to be realized. The aim of this study is to investigate the effect of oxygen enriched combustion. This paper analyzes the characteristics of oxygen enriched combustion, and deals with the experimental investigation of the flame temperature and NOx concentration in exhaust gas. The flame temperature, concentration of exhaust gas were measured and flame configurations were photographed according to the variation of oxygen concentrations in oxidizer.

  • PDF

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합 연료의 화염 안정화 특성)

  • Kim, Sun-Ho;Oh, Chang-Bo;Lee, Chang-Eon;Lee, In-Dae
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.165-172
    • /
    • 1999
  • Landfill gas has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. The authors have examined emission characteristics as well as measured burning velocity of LFG mixed gas which contains plenty of $CO_{2}$. With the viewpoint of fuel utilization, flame stability could be one of important characteristics of LFG. In this study, the comparison experiments are conducted between $CH_{4}$ and LFG for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, it is found that stabilization region of LFG is not improved with that of $CH_{4}$ in non-swirl/or weak swirl jet diffusion flame. However, it is also known that flame stability is hardly affected by inert gas in the strong swirl with considering widened flame stabilization region of LFG rather than LNG.

  • PDF

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank (PILOT LNG저장탱크의 화재안전성 평가에 관한 연구)

  • 고재선;김효
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.57-73
    • /
    • 2004
  • Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF