• Title/Summary/Keyword: LNG 버너

Search Result 22, Processing Time 0.023 seconds

The Optimization of Cylindrical Perforated Burner for Condensing Gas Boiler (콘덴싱 가스보일러용 원통형 다공버너의 최적화 연구)

  • 이창언;장기현;이강주;정영식
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • The objective of performing this study is to develop low emission condensing gas boiler. To reduce NOx and CO, three reasonable distances between burner and heat exchanger were decided through the experiments of model plane burner. Three burners with different diameter were made and then emission characteristics were examined. The optimum burner geometry was determined from flame stability, pollutant emission characteristics and applicability to the practical boiler system. In the domain of equivalence ratio 0.68~0.85, turn-down ratio of the burner designed by this research was extended to a wider range of 5 : 1. Thermal efficiency of the boiler developed by this study reached to 97% (LHV basis) of heating water efficiency at heating load of 20,000 kcal/hr when fueled by both of LNG or LPG. Emission ($O_2$=0%, wet basis) of NOx and CO concentration was 26 ppm and 85 ppm when fueled by LNG, 41 ppm and 113 ppm when fueled by LPG respectively.

Operating Characteristics of LNG burner for Steam Reforming of Natural Gas (천연가스 수증기개질 반응용 LNG 버너의 운전 특성)

  • Shin, Jang-Sik;Park, Jong-Won;Yang, Hye-Kyong;Lee, Seung-Young;Song, Bong-Hyun;Shin, Seock-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.477-480
    • /
    • 2006
  • In this study, we investigated operating characteristics of the LNG burner for steam methane reforming. The developed LNG burner and catalytic reactor to supply an efficient heat transfer between the combustion gas and catalyst got a good response of various operating load within 5-7 minute and high efficiency for steam methane reforming as a conversion of methane over 90%. We calculated the volume of catalyst for $1Nm^3/hr$ steam LNG reforming as $211cc/(Nm^3/hr\;H_2)$ and got the operating condition and design data of the burner and steam reforming for LNG.

  • PDF

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

A Study on the Burner Structure for Efficient Improvement of Steam Reforming (수증기 개질 반응기의 효율 향상을 위한 버너 구조 연구)

  • Sung, Bong-Hyun;Han, Jae-Chan;Shin, Jang-Sik;Lee, Seung-Young;Yang, Hye-Kyong;Shin, Seok-Jae;Park, Jong-Won;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.20-23
    • /
    • 2007
  • 가정용 연료전지 수소 공급용 연료변환 장치는 LNG, LPG를 이용하여 수소를 제조하는 수증기 개질과 제조된 합성가스의 정제공정으로 저온/고온 전이 반응 및 선택적 산화 반응을 포함하게 된다. 이중 전체 연료변환 장치 효율은 공정중의 유일한 흡열 반응인 수증기 개질 반응기 구조와 반응열 공급용 버너에 의해 결정된다. 반응열 공급용 버너의 형식, 구조 등의 변수를 통해 본 연구진에 의해 개발된 반응구조의 최적 열원 공급 방식을 산출하고자 하였다. 이를 위하여 본 연구에서는 원통형 개질 반응기에 적용 가능한 버너의 구조, 토출 각도, 토출구의 수 등의 버너 설계 변수가 버너의 성능의 미치는 영향에 대하여 연구하였다. 연구에 사용된 버너는 적용 연료의 혼합 특성을 증가시키기 위해 혼합공간을 충분히 유지 하였으며, 버너의 구조와 연소용 기체의 토출각 및 토출구의 위치 변화를 통한 불꽃의 형태를 변화 시켜 반응기 내의 온도 분포 특성을 비교 분석하였으며, 분석 결과에 의해 원통형 개질 반응기에서 최대 효율을 가지는 버너의 구조로부터 수증기 개질 반응을 평가하였다.

  • PDF

A study on Control System of the Heat Treating Furnace (열처리로 제어시스템 개발)

  • Kim, Sang-Yong;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.405-410
    • /
    • 2011
  • The heat treatment of the steel is very important part on the forging industry. It is also effect to price competitiveness. The burner control system of the heat treating furnace is related LNG gas saving and fixed manufactured goods rate. This study show the burner control performance of the heat treating furnace. The result developed the performance of the heat treating furnace and show energy saving.

Design of Large Capacity Clean Air Heater (대용량 청정 공기 가열 장치 설계)

  • Kim, Jeong-Woo;Jung, Kwang-Soo;Jeon, Min-Joon;Lee, Kyu-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.115-118
    • /
    • 2010
  • 2 Types of heater (Vitiated Type, Clean Air Type) in order to increase the temperature for a test are used for industry. In this report, large capacity clean air type heater was designed. Heater capacity and LNG consumption rate can be calculated by the air mass flow and heater inlet/outlet temperature. The heater is composed by Burner, Furnace, Heat Exchanger, and Stack. The hot air from the burner and cold air from the tube inlet exchange their heat indirectly in the heat exchanger, so the desired temperature can be achieved at the exit of the tube.

  • PDF

A Study on the Design and Development of Gas Burner for Gas Furnace (가스온풍기용 가스버너의 설계 및 개발에 관한 연구)

  • 박용호;염만오;심성훈;엄기훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of this study is to modify the kerosene furnace, which is forced flue type with 15000kcal capacity, to gas furnace satisfying for CITY gas, LNG gas and LPG gas. The gas furnace, a kind of gas appliance, is mainly used for heating houses by combusion of gas. This paper describes briefly the design technology for gas burner which is most important in replacing kerosene fuel with gas fuel. Especially, the design for gas nozzle is constructed by theoretical and experimental method. It is found that the experimental results of the modified gas burner are good agreement with the theoretical results for calorific value and combustion efficiency. The result of this study will contribute in the design skill and of gas burner and similar gas appliance, and the pursuit for reduction of fuel cost as well as atmospheric pollution.

  • PDF

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Operating Characteristics of $1Nm^3/hr$ class Natural Gas Fuel Processor for Residential Fuel cells (가정용 연료전지 $1Nm^3/hr$급 천연가스 연료처리장치의 운전 특성)

  • Shin, Jang-Sik;Shin, Seock-Jae;Lee, Seung-Young;Yang, Hye-Kyong;Sung, Bong-Hyun;Kim, Doo-Hoon;Park, Jong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.19-22
    • /
    • 2007
  • In this study, we investigated operating characteristics of natural gas fuel processor for polymer electrolyte membrane fuel cells (PEMFCs). The fuel processor consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume is exactly(exceptionally) small, namely, about 10L except outer insulation. The producted hydrogen is $1Nm^3/hr$ and the maximum thermal efficiency is ${\sim}76%$(low heating value) at full operating load. A compact and highly efficient $1Nm^3/hr$ class natural gas fuel processor was developed at UNISON is an advantage for application in residential PEMFCs co-generation systems.

  • PDF

에너지 절약 - 자원회수시설 소각폐열, 대체에너지로 급부상

  • 대한설비건설협회
    • 월간 기계설비
    • /
    • s.252
    • /
    • pp.50-51
    • /
    • 2011
  • 서울시는 최근 자원회수시설에서 쓰레기 소각 시 발생하는 질소산화물 저감방식을 개선해 매년 54억원의 예산을 절감하게 됐다고 밝혔다. 이번 아이디어는 독일 쉬텔링거 모어 소각장의 열교환시스템을 벤치마킹한 것으로 마포 자원회수시설 담당 공무원(김창환 주무관)이 지난 해 6월 독일을 방문한 뒤 제안하면서 탄생하게 됐다. 개선 방식은 질소산화물을 제거하기 위해 설치된 SCR촉매탑의 가온시스템을 LNG를 이용한 닥터버너 방식에서 '소각증기 사용 열교환 방식'으로 전환시킨 것이다.

  • PDF