• Title/Summary/Keyword: LNCaP cells

Search Result 66, Processing Time 0.028 seconds

Effects of Takrisodokyeum Water Extracts on LNCaP Prostate Cancer Cells

  • Park, Kwan-Woo;Kim, Song-Baeg;Choi, Chang-Min;Ryu, Do-Gon;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1154-1160
    • /
    • 2009
  • Androgen receptors (AR) play a crucial role in the development and progression of prostate cancer. Many studies have suggested that prostate cancer cell proliferation is inhibited by AR downregulation, and it has been reported that Takrisodokyeum (TRSDY) induced apoptotic cell death and suppressed tumorigenesis in human leukemia cells. Therefore, this study was conducted to elucidate the mechanism by which TRSDY affects cell growth and AR expression in androgen-dependent prostate cancer cells (LNCaP cells). We investigated the proliferation and apoptosis of LNCaP cells using MTT and DNA fragmentation assays. In addition, we used western blot analysis to assess the effects of TRSDY on the expression of the AR target gene, prostate-specific antigen (PSA). Furthermore, the mechanism of AR downregulation by TRSDY was investigated using EMSA to analyze the binding activity of AR to androgen response elements (ARE). TRSDY significantly suppressed proliferation and induced apoptosis in LNCaP cells. In addition, TRSDY-induced apoptotic cell death was accompanied by activation of caspase-3 and cleavage of its substrate, poly(ADP-ribose) polymerase. TRSDY also inhibited the constitutively expressed- or 5a-dihydrotestosterone (DHT)-induced AR/PSA protein levels. However, these effects were mediated by inhibition of the binding of AR to ARE. TRSDY-mediated AR/PSA downregulation contributes to the inhibition of cell proliferation and the induction of apoptosis in LNCaP human prostate cancer cells. Our findings suggest that TRSDY may be used as a chemopreventive or chemotherapeutic agent for the treatment of prostate cancer.

Resveratrol Inhibits IL-6-Induced Transcriptional Activity of AR and STAT3 in Human Prostate Cancer LNCaP-FGC Cells

  • Lee, Mee-Hyun;Kundu, Joydeb Kumar;Keum, Young-Sam;Cho, Yong-Yeon;Surh, Young-Joon;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.426-430
    • /
    • 2014
  • Prostate cancer is the most frequently diagnosed cancer. Although prostate tumors respond to androgen ablation therapy at an early stage, they often acquire the potential of androgen-independent growth. Elevated transcriptional activity of androgen receptor (AR) and/or signal transducer and activator of transcription-3 (STAT3) contributes to the proliferation of prostate cancer cells. In the present study, we examined the effect of resveratrol, a phytoalexin present in grapes, on the reporter gene activity of AR and STAT3 in human prostate cancer (LNCaP-FGC) cells stimulated with interleukin-6 (IL-6) and/or dihydrotestosterone (DHT). Our study revealed that resveratrol suppressed the growth of LNCaP-FGC cells in a time- and concentration-dependent manner. Whereas the AR transcriptional activity was induced by treatment with either IL-6 or DHT, the STAT3 transcriptional activity was induced only by treatment with IL-6 but not with DHT. Resveratrol significantly attenuated IL-6-induced STAT3 transcriptional activity, and DHT- or IL-6-induced AR transcriptional activity. Treatment of cells with DHT plus IL-6 significantly increased the AR transcriptional activity as compared to DHT or IL-6 treatment alone and resveratrol markedly diminished DHT plus IL-6-induced AR transcriptional activity. Furthermore, the production of prostate-specific antigen (PSA) was decreased by resveratrol in the DHT-, IL-6- or DHT plus IL-6-treated LNCaP-FGC cells. Taken together, the inhibitory effects of resveratrol on IL-6- and/or DHT-induced AR transcriptional activity in LNCaP prostate cancer cells are partly mediated through the suppression of STAT3 reporter gene activity, suggesting that resveratrol may be a promising therapeutic choice for the treatment of prostate cancer.

Antiproliferative Effects of Native Plants on Prostate Cancer Cells

  • Kim, Han Hyuk;Park, Kwan Hee;Kim, Manh Heun;Oh, Myoeng Hwan;Kim, So Ra;Park, Kwang Jun;Heo, Jun Hyeok;Lee, Min Won
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.192-200
    • /
    • 2013
  • As part of the research for the natural products about prostate-related disease, this study screened 159 plant species from 46 families, which included a total of 213 different kinds of local native plants and these plants were tested for the ability to inhibit LNCaP proliferation, an androgen-sensitive prostate cancer cell line, and DU145 proliferation, which is a more aggressive androgen-insensitive prostate cancer cell line. The results indicated that nineteen of 213 types of plants exhibited antiproliferative activity (cell viability < 30%, $500{\mu}g/mL$) on the growth of androgen-sensitive LNCaP cell lines, and five of them exhibited DU145 cell antiproliferative activity (cell viability < 30%, $500{\mu}g/mL$). The methanol extracts of Eurya emarginata (stems), Gleditsia japonica var. koraiensis (leaves), Photinia glabra (leaves) and Elaeagnus macrophylla (leaves) showed antiproliferative activity on both the androgen-sensitive LNCaP cells (cell viability < 30%) and androgen-insensitive DU145 cells (cell viability > 100%). The study also found that the methanol extracts of Styrax japonica (fruits), Aralia continentalis (leaves), Fagus crenata var. multinervis (stems), Thuja orientalis (stems) and Poncirus trifoliate (branches) presented the strongest activity and demonstrated potent antiproliferative activity on both cell lines (LNCaP and DU145 cell viability < 30%).

Effects of Ginsenosides $Rg_3$ and $Rh_2$ OH the Proliferation of Prostate Cancer Cells

  • Kim Hyun-Sook;Lee Eun-Hee;Ko Sung-Ryong;Choi Kang-Ju;Park Jong-Hee;Im Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2004
  • Ginseng has an anti-cancer effect in several cancer models. This study was to characterize active constituents of ginseng and their effects on proliferation of prostate cancer cell lines, LNCaP and PC3. Cell proliferation was measured by $[^3H]$thymidine incorporation, the intracellular calcium concentration by a dual-wavelength spectrophotometer system, effects on mite-gen-activated protein (MAP) kinases by Western blotting, and cell attachment and morphologic changes were observed under a microscope. Among 11 ginsenosides tested, ginsenosides $Rg_3\;and\;Rh_2$ inhibited the proliferation of prostate cancer cells. $EC_{50}s\;of\;Rg_3\;and\;Rh_2$ on PC3 cells were $8.4{\mu}M\;and\;5.5{\mu}M$, respectively, and $14.1{\mu}M\;and\;4.4{\mu}M$ on LNCaP cells, respectively. Both ginsenosides induced cell detachment and modulated three modules of MAP kinases activities differently in LNCaP and PC3 cells. These results suggest that ginsenosides $Rg_3\;and\;Rh_2$-induced cell detachment and inhibition of the proliferation of prostate cancer cells may be associated with modulation of three modules of MAP kinases.

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Functional Expression of Choline Transporter-Like Protein 1 in LNCaP Prostate Cancer Cells: A Novel Molecular Target

  • Saiki, Iwao;Yara, Miki;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.195-201
    • /
    • 2020
  • Prostate cancer is one of the most common cancers in men. Choline PET or PET/CT has been used to visualize prostate cancer, and high levels of choline accumulation have been observed in tumors. However, the uptake system for choline and the functional expression of choline transporters in prostate cancer are not completely understood. In this study, the molecular and functional aspects of choline uptake were investigated in the LNCaP prostate cancer cell line along with the correlations between choline uptake and cell viability in drug-treated cells. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed in LNCaP cells. CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. [3H]Choline uptake was mediated by a single Na+-independent, intermediate-affinity transport system in the LNCaP cells. The anticancer drugs, flutamide and bicalutamide, inhibited cell viability and [3H]choline uptake in a concentration-dependent manner. The correlations between the effects of these drugs on cell viability and [3H]choline uptake were significant. Caspase-3/7 activity was significantly increased by both flutamide and bicalutamide. Furthermore, these drugs decreased CTL1 expression in the prostate cancer cell line. These results suggest that CTL1 is functionally expressed in prostate cancer cells and are also involved in abnormal proliferation. Identification of this CTL1-mediated choline transport system in prostate cancer cells provides a potential new therapeutic target for the treatment of this disease.

Selenium arrest G1/S phase of cell cycle in LNCaP human prostate cancer cells (사람 전립선암세포주인 LNCaP에서 셀레늄의 G1/S 세포주기억제에 관한 연구)

  • Nam, Jeong-Seok;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2009
  • The trace element nutrient selenium discharges its well-known nutritional anti-tumor activity. Converging data from epidemiological, ecological and clinical studies have shown that selenium can decrease the risk for some types of human cancers, especially those of the prostate, lung, and colon. Mechanistic studies have indicated that selenium has many desirable attributes of chemoprevention targeting cancer cells through DNA single strand breaks, the induction of reactive oxygen species. However, there is no reports about the relationship between methylseleninic acid (MSeA), one of methylselenol metabolites and cell cycle arrest in LNCaP human prostate cancer cells. Our data showed that MSeA arrested G1/S pahse of cell cycle arrest and inhibited DNA synthesis in LNCaP cells and those cellular events by MSeA were due to the induction ofp27 protein which is a well-known cyclin-dependent kinase inhibitor. Taken together, cell cycle arrest occurred by MSeA may contribute to the growth-inhibition of prostate cancer cells.

Inhibitory Effect of the Hexane Extract of Saussurea lappa on the Growth of LNCaP Human Prostate Cancer Cells (목향 헥산추출물의 LNCaP 전립선암세포 증식 억제 효과)

  • Park, So-Young;Kim, Eun-Ji;Lim, Do-Young;Kim, Jong-Sang;Lim, Soon-Sung;Shin, Hyun-Kyung;Yoon Park, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • Saussurea lappa (SL) has been used to reduce abdominal pain and tenesmus in traditional oriental medicine. SL and major compounds of SL, sesquiterpene lactones, have been suggested to possess various biological effects, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral and cardiotonic activities. Recently, it has been reported that ethanol extracts from roots of SL have antiproliferative effects on gastric cancer cells. To explore the possibility that SL has chemopreventive effects on prostate cancer, we examined whether the hexane extract of SL (HESL) inhibits the growth of LNCaP human prostate cancer cells. Cells were incubated with various concentrations ($0{\sim}4$ mg/L) of HESL in DMEM/F12 containing 5% charcoal stripped fetal bovine serum. HESL substantially decreased viable cell numbers and induced apoptosis of LNCaP cells in dose-dependent manners. HESL increased the levels of cleaved caspase-8, -9, -7 and -3, and poly (ADP-ribose) polymerase. HESL increased the levels of the pro-apoptotic Bak and truncated-Bid proteins whereas it had no effect on the anti-apoptotic Bcl-2, Bcl-xL, or Mcl-1. The present results indicate that HESL inhibits the growth of human prostate cancer cells by inducing apoptosis, which involves the activation of the caspase cascades.

Inhibition of Proliferation of LNCaP Prostate Cells by Corni Fructus Extract Is Associated with a Decrease in the Expression of Benign Prostatic Hyperplasia-Causing Factors (산수유 추출물에 의한 LNCaP 전립선 세포의 증식 억제 및 양성 전립선 비대증 유발 인자의 발현에 미치는 영향)

  • Kim, Min Yeong;Ji, Seon Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Objectives: Benign prostatic hyperplasia (BPH) is a progressive pathological condition characterized by excessive proliferation of the prostate. In this study, we evaluated the effect of Corni Fructus water extract (CF) on the promotion of prostate cell proliferation by dihydrotestosterone (DHT). Methods: The effect of CF on the proliferation of LNCaP prostate cells was evaluated, and DHT was treated to induce an in vitro BPH model. To study the mechanism of inhibition of cell proliferation and BPH by CF, changes in the expression of key factors related to cell cycle and BPH were investigated. We further investigated the effect on the production of reactive oxygen species (ROS) and nitric oxide (NO) to evaluate the antioxidant and anti-inflammatory efficacy of CF. Results: Inhibition of LNCaP cell proliferation by CF was associated with decreased expression of cyclin D1 and cyclin A and increased expression of cyclin-dependent kinase inhibitor p21. CF also suppressed expression of BPH inducing factors such as 5α-reductase type 2 and androgen receptor (AR) as well as prostate specific antigen (PSA). Furthermore, CF significantly blocked DHT-induced LNCaP cell proliferation and effectively attenuated DHT-induced expression of BPH mediators and cyclins. In addition, CF inhibited DHT-induced oxidative and inflammatory reactions by inhibiting production of ROS and NO. Conclusion: Our results demonstrated that CF probably acted as 5α-reductase type 2 inhibitor, preventing the 5α-reductase type 2-AR signaling pathway, thereby reducing the conversion of testosterone to DHT and the expression of PSA, which is at least correlated with the antioxidant and anti-inflammatory activities of CF.

Cytotoxic and Apoptotic-inducing Effects of Purple Rice Extracts and Chemotherapeutic Drugs on Human Cancer Cell Lines

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Sringarm, Korawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6541-6548
    • /
    • 2013
  • Pigmented rice is mainly black, red, and dark purple, and contains a variety of flavones, tannin, polyphenols, sterols, tocopherols, ${\gamma}$-oryzanols, amino acids, and essential oils. The present study evaluated the cytotoxic effects of purple rice extracts (PREs) combined with chemotherapeutic drugs on human cancer cells and mechanisms of cell death. Methanolic (MeOH) and dichloromethane (DCM) extracts of three cultivars of purple rice in Thailand: Doisaket (DSK), Nan and Payao (PYO), were tested and compared with white rice (KK6). Cytotoxicity was determined by 3-(4, 5-dimethyl)-2, 5-diphenyltetrazolium bromide (MTT) assay in human hepatocellular carcinoma HepG2, prostate cancer LNCaP and murine normal fibroblast NIH3T3 cells. MeOH-PYO-PRE was the most cytotoxic and inhibited HepG2 cell growth more than that of LNCaP cells but was not toxic to NIH3T3 cells. When PREs were combined with paclitaxel or vinblastine, they showed additive cytotoxic effects on HepG2 and LNCaP cells, except for MeOH-PYO-PRE which showed synergistic effects on HepG2 cells when combined with vinblastine. MeOH-PYO-PRE plus vinblastine induced HepG2 cell apoptosis with loss of mitochondrial transmembrane potential (MTP) but no ROS production. MeOH-PYO-PRE-treated HepG2 cells underwent apoptosis via caspase-9 and-3 activation. The level of ${\gamma}$-oryzanol was highest in DCM-PYO-PRE (44.17 mg/g) whereas anthocyanin content was high in MeOH-PYO-PRE (5.80 mg/g). In conclusion, methanolic Payao purple rice extract was mostly toxic to human HepG2 cells and synergistically enhanced the cytotoxicity of vinblastine. Human HepG2 cell apoptosis induced by MeOH-PYO-PRE and vinblastine was mediated through a mitochondrial pathway.