본 논문에서는 G.711 패킷 손실 은닉 알고리즘의 성능향상을 위해 적응적 신호 크기 예측을 사용하는 패킷 손실 알고리즘을 제안한다. 기존의 방법은 연속 손실이 발생하였을 때 20 %의 감쇠인자를 가지고 이득조절을 수행하였다. 그러나 이 방법은 신호의 변화를 고려하지 않기 때문에 신호가 왜곡되는 경우가 발생한다. 따라서 Least Mean Square(LMS) 예측기를 사용하여 이전과 이후 프레임의 정보를 통한 적응적 신호 크기 예측으로 이득을 조절하는 것을 제안한다. 제안된 알고리즘의 성능 평가는 Perceptual Evaluation of Speech Quality(PESQ) 평가를 통하여 나타내었다.
알고리즘 구조가 간단하고 실제적 응용이 쉬운 LMS 알고리즘을 이용한 적응 필터 설계에서 횡단필터, 격자필터 및 결합처리 격자필터의 예측기 특성을 비교 연구하였다. 실제적 설계를 위해 각 필터의 LMS 알고리즘의 이론적 배경과 구성을 보였고 최적 가중치 벡터와 반사계수의 적응 수렵조건을 명시하였으며 이를 컴퓨터 시뮬레이션을 통하여 나타내었다. 또한 정지및 비정지 입력 신호에 대한 이들 필터의 오차신호 특성과 잡음특성을 비교하였고 결합처리 격자필터가 이들 LMS 알고리즘을 이용한 적응 필터에서 가장 우수한 특성을 갖고 있음을 보였다.
In this paper a adaptive LMS(least mean-square) lattice predictor, which is composed of the adaptive lattice algorithm and LMS algorithm by Widrow-Hopf, is used to predict the future air pollution of the extraordinary levels in the environmental system. This prediction algorithm is applied to the one-step forward prediction of atmospheric CO concentration by using real observed data. Computer simulation proves that the power in the forward error sequences decreases as the number of stages in the lattice is increased.
On-line learning has been adopted as a major educational method due to the COVID-19 pandemic. Students and faculties got accustomed to on-line educational environment as they experienced it during the COVID-19 pandemic. Development of various technologies and social requirement for educational renovation lay groundwork for on-line learning as well. Therefore, on-line learning or blended learning will be likely to go on after the end of COVID-19 pandemic and it is necessary to prepare the guidelines for effective utilizing on-line learning. The primary purpose of this study is to examine the learning behaviors and the learning effects by using LMS data. Learning behaviors were measured in terms of learning time and access frequency for pre-recorded video lectures targeting computer-practice classes. The results of empirical analysis reveal that frequency was the significant predictor of course achievements but learning time was not. The findings of empirical analysis will provide insights that the effective planning and designing on-line classes based on learning behaviors are key to enhancing learning effects and learner's satisfaction.
본 논문에서는 피치 하모닉 움직임 예측과 적응적 신호 크기 예측을 이용한 패킷 손실 알고리즘을 제안한다. 스펙트럼 움직임 예측 방법은 사용 가능한 이전 패킷의 스펙트럼 상의 움직임을 일정한 부대역으로 나누어 손실된 신호의 움직임을 예측하여 복원한다. 제안하는 알고리즘에서는 음성신호를 유성음과 무성음으로 구분하여 유성음의 경우 피치 주파수를 활용하여 피치 하모닉으로 나누어 손실된 신호의 피치 하모닉 움직임을 예측하여 복원하고 무성음의 경우 스펙트럼 움직임 예측 방법을 사용하여 신호를 복원한다. 음성 프레임의 연속 손실이 발생한 경우 LMS(Least Mean Square) 예측기를 사용하여 이전 프레임의 이득 정보를 활용하여 신호 크기를 예측하여 출력 신호의 이득을 조절하는 방법을 제안한다. 객관적 평가방법인 PESQ (Perceptual Evaluation of Speech Quality) 시험을 통해 제안된 알고리즘의 성능을 평가하였고 기존의 방법보다 MOS 0.1의 성능 개선을 보였다.
In a conventional adaptive echo canceller, an ADF(Adaptive Digital Filter) with TDL(Tapped-Delay Line) structure modelling the echo path uses the LMS(Least Mean Square) algorithm to compute the coefficients, and NET detector using energy comparison method prevents the ADF to update the coefficients during the periods of the NET signal presence. The convergence speed of the LMS algorithm depends on the eigenvalue spread ratio of the reference signal and NET detector using the energy comparison method yields poor detection performance if the magnitude of the NET signal is small. This paper presents a new adaptive echo canceller which uses the pre-whitening filter to improve the convergence speed of the LMS algorithm. The pre-whitening filter is realized by using a low-order lattice predictor. Also, a new NET signal detection algorithm is presented, where the start point of the NET signal is detected by computing the cross-correlation coefficient between the primary input and the ADF output while the end point is detected by using the energy comparison method. The simulation results show that the convergence speed of the proposed adaptive echo canceller is faster than that of the conventional echo canceller and the cross-correlation coefficient yields more accurate detection of the start point of the NET signal.
The purpose of this paper is to develop a new adaptive echo canceller improving convergence speed and near-end-talker detection performance of the conventional echo canceller. In a conventional adaptive echo canceller, an adaptive digital filter with TDL(Tapped-Delay Line) structure modelling the echo path uses the LMS(Least Mean Square) algorithm to cote the coefficients, and NET detector using energy comparison method prevents the adaptive digital filter to update the coefficients during the periods of the NET signal presence. The convergence speed of the LMS algorithm depends on the eigenvalue spread ratio of the reference signal and NET detector using the energy comparison method yields poor detection performance if the magnitude of the NET signal is small. This paper presents a new adaptive echo canceller which uses the pre-whitening filter to improve the convergence speed of the LMS algorithm. The pre-whitening filter is realized by using a low-order lattice predictor. Also, a new NET signal detection algorithm is presented, where the start point of the NET signal is detected by computing the cross-correlation coefficient between the primary input and the ADF(Adaptive Digital Filter) output while the end point is detected by using the energy comparison method. The simulation results show that the convergence speed of the proposed adaptive echo canceller is faster than that of the conventional echo canceller and the cross-correlation coefficient yield more accurate detection of the start point of the NET signal.
This paper proposes an efficient adaptive echo canceller using pilot filter approach to achieve improved convergence speed. The pilot filter is an adaptive filter with only a few filter coefficients to filter the received signal for the purpose of whitening the signal. Thus the convergence speed of the main LMS-TDL filter combined with the pilot filter is improved. In the proposed echo canceller, an adaptive lattice predictor as the pilot filter is used and its inverse filter is used to equalize the distorted near end talker signal. Simulation results for colored signal show that the convergence speed of the proposed echo cancellation algorithm is faster than that of the conventional LMS-TDL echo cancellation algorithm.
An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional FX-LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.
The convergence of adaptive algorithm depends mainly on the proper choice of the design factor called the covergence factor. In the paper, an optimal convergence factor involved in TRLMS algorithm, which is used to predict the coefficients of the ARMA predictor in ADPCM is presented. It is shown that such an optimal value can be generated by system signals such that the adaptive filter becomes self optimizing in terms of the convergence factor. This algorithm is applied to real image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.