• Title/Summary/Keyword: LMO laboratory

Search Result 24, Processing Time 0.027 seconds

A Study on the Difficulties Faced by High School Science Teachers in Operating LMO Laboratories (고등학교 LMO 실험실 운영에서 과학교사가 갖는 어려움에 관한 연구)

  • Seongjae Lee;Jiwon Yeo;Sang-Hak Jeon
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • As the social and economic value of living modified organisms (LMOs) increase, so do the potential risks they pose to humans and the environment. Therefore, all laboratories using LMOs must establish an LMO laboratory in accordance with the standards required by regulations. Recently, in high school, LMO-related experimental programs have been developed for their educational effects. Also, in this case, it is necessary to comply with the regulation for LMO laboratories. However, high schools are still unfamiliar with the LMO laboratory, and it is difficult for teachers to manage an LMO laboratory because its implementation applies the same standards to general research institutes. In this study, we used causal chain analysis to discover the difficulties each teacher faced while setting up an LMO laboratory by examining three cases. The difficulties experienced by teachers are as follows: the first problem is "reluctance to set up an LMO laboratory," because of "administrative tasks for laboratory registration" and "difficulty in persuading colleagues." The second problem is a difficulty for teachers to operate LMO laboratory in blind spots, due to "inflexible installation and closure," "medical waste disposal," and "LMO education that does not fit the school context." Through this study, although the difficulty of running an LMO laboratory is caused by a lack of necessity and insufficient consideration of the school context, the more fundamental cause was a lack of collaborative planning between the educational field and the operating institutions. The teachers who participate in this research suggest that "using shared LAB" and "preparing opportunities for knowledge sharing" can be considered as strategies for operating the school's LMO laboratory. We feel that this study will provide a useful reference for teachers or schools planning to build an LMO laboratory.

STRATEGIC RESEARCH AT ORNL EOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - II

  • Paranthama, M. Parans;Aytug, T.;Sathyamurthy, S.;Zhai, H.Y.;Christen, H.M.;Martin, P.M.;Goyal, A.;Christen, D.K.;Kroeger, D.M.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.340-340
    • /
    • 2002
  • In an effort to develop alternative single buffer layer technology for YBa$_2$Cu$_3$O$_{7-{\delta}}$ (YBCO) coated conductors, we have investigated both LaMnO$_3$, (LMO) and La$_2$Zr$_2$O$_{7}$ (LZO) as potential buffer layers. High-quality LMO films were grown directly on textured Ni and Ni-W (3%) substrates using rf magnetron sputtering. Highly textured LZO buffers were grown on textured Ni substrates using sol-gel alkoxide processing route. YBCO films were then grown on both LMO and LZO buffers using pulsed laser deposition. Detailed X-ray studies have shown that YBCO films were grown on both LMO and LZO layers with a single epitaxial orientation. A high J$_{c}$ of over 1 MA/cm$^2$ at 77 K and self-field was obtained on YBCO films grown on both LMO-buffered Ni or Ni-W substrates, and also on LZO-buffered Ni substrates. We have identified LaMnO$_3$ as a good diffusion barrier layer for Ni and it also provides a good template for growing high current density YBCO films. Similarly we have also demonstrated the growth of high J$_{c}$ YBCO films on all solution buffers. We will discuss in detail about our buffer deposition processes. processes.s.s.s.s.

  • PDF

An Investigation on the Recognition of Biosafety Regulation Systems for the Living Modified Organism (유전자변형생물체 안전관리제도 인식조사)

  • Rho, Young-Hee;Hong, Jeong-Yoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.63-67
    • /
    • 2014
  • BACKGROUND: The present study is an exploratory research to establish national biosafety regulation systems through a survey on the recognition of safety regulation systems for the living modified organism(LMO). METHODS AND RESULTS: We have conducted a survey on an awareness of LMO safety regulation systems in scientific working groups. The data of 235 respondents were analyzed using various statistical methods. As a result, 72.8% of the respondents were male; 27.2% were female, and 43.4% of them work in the university. A total of 33.2% of the respondents majored in general biology, and their most common job position was the laboratory safety manager. The difference of an awareness on LMO law and regulatory system was not statistically significant by either work places or job positions. CONCLUSION: For the rapid settlement and the efficient implementation of LMO safety management policy, we conclude that it is required to reduce the gap between the recognition and fulfillment of safety management. Furthermore, the mutual exchanges of information among researchers are needed with the settlement of the safety management system and the harmony of policy with improvement of the absurd regulations. The ongoing and specialized training, inspections, and the strengthening of public relations are also required along with the efforts to improve the absurd regulations.

Effect of Heat, Pressure, and Acid Treatments on DNA and Protein Stability in GM Soybean (GM 콩 DNA와 단백질의 안정성에 대한 열, 압력 및 산 처리의 영향)

  • Pack, In-Soon;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Sang-Kyu;Youk, Eun-Soo;Kim, Hwan-Mook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.677-682
    • /
    • 2004
  • Debates on safety of genetically modified (GM) crops have led to mandatory-labeling legislation of GM foods in many countries including Korea. Effects of heat, pressure, and acid treatments on degradation of DNAs or proteins in GM soybean at levels below detection limits of qualitative PCR and lateral flow strip test (LFST) methods were examined. Results showed that genomic DNAs and proteins were degraded into fragment sizes no longer possible for detection of inserted gene depending on thermal, or thermal and pressure treatment period. Detectaability of LFST for toasted meal increased in weakly treated soybean. DNA and protein detection methods were barely effective for detection of GM ingredient after $121^{\circ}C$ and 1.5 atmospheric treatment for 20 min. These results will be useful in determining GM labeling requirements of processed foods.

Simulative Study of Effects of LM Microorganism on Environment: Analyses of Metabolomes and Soil Microbial Communities (LM 미생물의 환경영향 모사: 대사체와 토양미생물군 분석)

  • Lee, Ji-Hoon;Ki, Min-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • BACKGROUND: Living modified microorganisms (LMMs) have been focused in two very different aspects of positive and negative effects on ecology and human health. As a model experiment, wild type and a foreign origin gene-harboring modified E. coli strains were subjected to comparison of their metabolomes and potential effects on soil microbiota in the laboratory sets. This study assumes the unintentional release of LMMs and tries to suggest potential effects on the soil microbiota even at minimal settings. METHODS AND RESULTS: Metabolomes from the wild type and LM E. coli were analyzed by NMR and the profiles were compared. In the laboratory soil experiments, the two types of E. coli were added to the soils and monitored for the bacterial community compositions. Those metabolomic profiles did not show significant differences. The microbial community structures from the time series soil DNAs for both the sets using wild type and LMO also did not indicate significant changes, but minor by the addition of foreign organisms regardless of wild or LMO. CONCLUSION: Even if the recombinant microorganism (LMO) is released into the soil environment, the survival of microorganisms in the environment would be one of the major factors for the transfers of foreign genes to other organisms and diffusion into the soil environment.

Listeria monocytogenes Serovar 4a is a Possible Evolutionary Intermediate Between L. monocytogenes Serovars 1/2a and 4b and L. innocua

  • Chen, Jianshun;Jiang, Lingli;Chen, Xueyan;Luo, Xiaokai;Chen, Yang;Yu, Ying;Tian, Guoming;Liu, Dongyou;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.238-249
    • /
    • 2009
  • The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes-L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascB-dapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

Rapid Detection of Lily mottle virus and Arabis mosaic virus Infecting Lily (Lilium spp.) Using Reverse Transcription Loop-Mediated Isothermal Amplification

  • Zhang, Yubao;Wang, Yajun;Xie, Zhongkui;Wang, Ruoyu;Guo, Zhihong;He, Yuhui
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.170-178
    • /
    • 2020
  • The Lily mottle virus (LMoV) impedes the growth and quality of lily crops in Lanzhou, China. Recently Arabis mosaic virus (ArMV) has been detected in LMoV-infected plants in this region, causing plant stunting as well as severe foliar symptoms, and likely posing a threat to lily production. Consequently, there is a need to develop simple, sensitive, and reliable detection methods for these two viruses to prevent them from spreading. Reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assays have been developed to detect LMoV and ArMV using two primer pairs that match six conserved sequences of LMoV and ArMV coat proteins, respectively. RT-LAMP assay results were visually assessed in reaction tubes using green fluorescence and gel electrophoresis. Our assays successfully detected both LMoV and ArMV in lily plants without the occurrence of viral cross-reactivity from other lily viruses. Optimal conditions for LAMP reactions were 65℃ and 60℃ for 60 min for LMoV and ArMV, respectively. Detection sensitivity for both RT-LAMP assays was a hundredfold greater than that of our comparative RT-polymerase chain reaction assays. We have also found this relatively rapid, target specific and sensitive method can also be used for samples collected in the field and may be especially useful in regions with limited or no laboratory facilities.

Plant Virome Analysis by the Deep Sequencing of Small RNAs of Fritillaria thunbergii var. chekiangensis and the Rapid Identification of Viruses

  • Chen, Lu-xi;Pan, Hang-kai;Tao, Yu-tian;Yang, Dang;Deng, Hui-min;Xu, Kai-jie;Chen, Wen-bin;Li, Jun-min
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.533-540
    • /
    • 2022
  • Thunberg fritillary (Fritillaria thunbergii), a perennial used in traditional Chinese herbal medicine, is a members of the family Liliaceae. The degeneration of germplasm is a severe problem in the production of Fritillaria thunbergii var. chekiangensis. However, no information about viral infections of F. thunbergii var. chekiangensis has been reported. In this study, we sequenced the small RNAs of F. thunbergii var. chekiangensis from leaves and bulbs, and viruses were identified using a phylogenetic analysis and BLAST search for sequence. In addition, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was used to rapidly detect viruses in this variety. Our study first reported that five viruses infected F. thunbergii var. chekiangensis. Among them, fritillary virus Y (FVY), lily mottle virus (LMoV), Thunberg fritillary mosaic virus (TFMV), and hop yellow virus (HYV) had been reported in F. thunbergii, while apple stem grooving virus was first reported in the genus Fritillaria. A multiplex RT-PCR method was developed to rapidly test the four viruses FVY, LMoV, TFMV, and HYV in F. thunbergii var. chekiangensis. Our results provide a better understanding of the infection of F. thunbergii var. chekiangensis by viruses and a basic reference for the better design of suitable control measures.

Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

  • Huang, Hao;Lu, Benqian;Liu, Yuanyuan;Wang, Xeuqian;Hu, Jie
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850121.1-1850121.11
    • /
    • 2018
  • In this study, a series of $LaMnO_3$-diamond composites with varied $LaMnO_3$ mass contents supported on micro-diamond have been synthesized using a sol-gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet-visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of $LaMnO_3$ is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of $LaMnO_3$ and diamond is 1:2 (LMO-Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.