• Title/Summary/Keyword: LMI based $H_{\infty}$ control

Search Result 75, Processing Time 0.03 seconds

Design of H Repetitive Control Systems using State Feedback (상태 궤환을 이용한 H 반복 제어 시스템 설계)

  • Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • Repetitive control is a specialized control scheme to track and/or attenuate a periodic reference trajectory and/or disturbance. Most researches about repetitive control have been performed in the frequency domain. Recently, several approaches to deal with repetitive control systems in the state space are developed by representing a q filter as a state-space equation. This paper presents a design method of a repetitive control system in the state space to satisfy $H_{\infty}$ performance. The overall system is composed of a plant, a repetitive controller, and a state-feedback controller, which can be converted to a standard form used in $H_{\infty}$ control. A LMI (Linear Matrix Inequality)-based stability condition is derived for fixed state-feedback gains. Under a given q filter, another LMI condition is derived to improve $H_{\infty}$ performance and is employed to find state-feedback gains by solving an optimization problem. Finally, to verify the feasibility of the proposed method, a numerical example is demonstrated.

A Study on the Control Model Identification and H(sub)$\infty$ Controller Design for Trandem Cold Mills

  • Lee, Man-Hyung;Chang, Yu-Shin;Kim, In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.847-858
    • /
    • 2001
  • This paper considers the control model identification and H(sub)$\infty$ controller design for a tandem cold mill (TCM). In order to improve the performance of the existing automatic gauge control (AGC) system based on the Taylor linearized model of the TCM, a new mathematical model that can complement the Taylor linearized model is constructed by using the N4SID algorithm based on subspace method and the least squares algorithm based on ARX model. It is shown that the identified model had dynamic characteristics of the TCM than the existing Taylor linearized model. The H(sub)$\infty$ controller is designed to have robust stability to the system parameters variation, disturbance attenuation and robust tracking capability to the set-up value of strip thickness. The H(sub)$\infty$ servo problem is formulated and it is solved by using LMI (linear matrix inequality) techniques. Simulation results demonstrate the usefulness and applicability of the proposed H(sub)$\infty$ controller.

  • PDF

[ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

Stabilizable Predictiye Control with $H_{\infty}$ performance : The State-space approach ($H_{\infty}$ 성능을 가지는 안정화 예측제어 : 상태공간 접근법)

  • 정종남;조상현;전재완;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.269-269
    • /
    • 2000
  • This paper presents a predictive control with H$_{\infty}$ suboptimal performance which is robust to disturbances and has a guaranteed stability. In order to derive the control law conveniently, state-space based approach, where the state variable is involved explicitly in the controller design and implementation is allowed. So an input-output model is converted to an equivalent observable canonical state-space form. The suggested control guarantees the norm bounded system output values from disturbances. A systematic way using the LMI method is presented to obtain appropriate parameters for Quadratic stability condition and optimization problem.

  • PDF

Robust PID Controller Design for Speed Control of BLDC Motors (BLDC 모터 속도제어를 위한 견실 PID 제어기 설계)

  • 양승윤;김인수;전완수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • In this paper, the robust PID(Proportional-Integral-Derivative) controller was designed for speed control of BLDC motors using the frequency region model matching method. It was designed the robust PID controller satisfying disturbance attenuation and robust tracking performance using an H$\infty$ control method. The robust PID controller gains with the performances of the designed H$\infty$ controller are determined using the model matching method at frequency domain. Consequently, simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking performance, and this study has usefulness and applicability for the speed control system design of BLDC motors.

LMI-Based Controller Design of Pneumatic Cylinder (LMI를 이용한 공기압 실린더의 상태제어기 설계)

  • Jang, J.S.;Ji, J.W.;Kim, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Pneumatic driving systems have hard non-linear characteristic and large friction force compared with driving power. Hence, it cannot be robust against parameter uncertainties, modelling error, disturbance and noise. In this study, we apply a mixed $H_2/H_{\infty}$ control to the generalized plant for a pneumatic driving apparatus system including parameter uncertainty and disturbance. In order to design the $H_2/H_{\infty}$ controller, we use the LMI technique. To evaluate control performance and robust stability of the designed controller, we compare it with a conventional controller such as PVA(Position-Velocity-Acceleration state controller) using the simulation results. As a result, it can be known that designed controller shows better robust stability than the conventional controller.

  • PDF

Compensation of Networked Control Systems using LMI-Based H_$\infty$Optimization Method

  • Ho-Jun Yoo;Myung-Eui Lee;Oh-Kyu Kwon
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.72-77
    • /
    • 2002
  • Delay and noise in networked control systems are inevitable and can degrade system performance or stability This paper propose a compensation method for networked control systems with network-induced delay and noise using LMI(linear matrix inequality)-based H_\infty optimization. The H_\infty optimization methods have adapted to account for both the time delay and noise effects. Some simulations applied to inverted pendulum with networked control show that the proposed method works well.

  • PDF

Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay (파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.9-16
    • /
    • 2004
  • This paper provides an observer-based Η$\infty$ output feedback controller design method for descriptor systems with time-varying delay by just one LMI(linear matrix inequality) condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI approach which can be solved efficiently by convex optimization. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement changes of variables, and singular value decomposition. Moreover, The proposed controller design algorithm can be extended to the observer-based robust Η$\infty$ output feedback controller design method for descriptor systems with parameter uncertainty and time delay. An example is given to illustrate the results.

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Robust Servo System Design by $H_2/H_{\infty}$ Control - Application to Three Inertia Benchmark Problem- (혼합 $H_2/H_{\infty}$제어에 의한 강인한 서보시스템의 설계 -3관성 벤치마크문제의 해법 -)

  • Choe, Yeon-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.148-156
    • /
    • 2005
  • The purpose of this paper is to propose an approach to design a robust servo controller based on the mixed $H_2/H_{\infty}$ theory, and confirm its validity by applying to a benchmark problem. First, the existing $H_{\infty}$ servo problem is modified to a structure for the mixed $H_2/H_{\infty}$ control problem by virtue of the internal model principle. By making use of proposed structure, we can divide specifications required in the robust servo system design into $H_2$ and $H_{\infty}$ performance criteria, respectively. It is shown that the proposed design approach is quite effective through an application to a three inertia benchmark problem.

  • PDF