• 제목/요약/키워드: LMI(Linear Matrix Inequality)

검색결과 352건 처리시간 0.032초

LMI 기법을 이용한 시변 불확정성 선형 시스템의 강인 극점 배치 설계 (Robust Pole Assignment Design for Linear Time-varying Uncertain Systems using LMI)

  • 김재성;마삼선;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.491-493
    • /
    • 1999
  • In this paper, we consider the design of robust pole assignment for linear system. Considered uncertainty is time-varying uncertainty. Based on Lyapunov stability theorem and linear matrix inequality(LMI) we present the design result for pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

무인 잠수정의 깊이 제어를 위한 T-S 퍼지 모델 기반 H 제어기 설계: 선형 행렬 부등식 접근법 (Design of T-S Fuzzy Model Based H Controller for Diving Control of AUV: An LMI Approach)

  • 전성우;김도완;이호재
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.441-447
    • /
    • 2012
  • 본 논문은 무인 잠수정(Autonomous underwater vehicles: AUVs)의 타카기-수게노 (Takagi-Sugeno: T-S) 퍼지 모델 기반 $H_{\infty}$ 제어기 설계 기법을 제안한다. 설계 기법은 외란을 갖는 무인 잠수정의 깊이 제어 성능을 보장하는 안정성 있는 제어기 설계에 초점을 맞춘다. 비선형 무인 잠수정 시스템은 Sector nonlinearity 기법을 이용하여 T-S 퍼지 시스템으로 모델링된다. 리아푸노프(Lyapunov) 함수를 이용해 제어 성능을 보장하는 선형 행렬 부등식(linear matrix inequality: LMI) 형태의 $H_{\infty}$ 제어기 설계 조건을 유도한다. 성공적인 무인 잠수정의 깊이 제어를 위해 선형 행렬 부등식에 심도각과 피치각의 제한 조건을 고려한다. 시뮬레이션을 통해 제안된 기법의 성능을 검증한다.

대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계 (An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어 (Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer)

  • 윤문채;김정수;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

Piecewise Affine Control Design for Power Factor Correction Rectifiers

  • Tahami, Farzad;Poshtkouhi, Shahab;Ahmadian, Hamed Molla
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.327-334
    • /
    • 2011
  • Single-phase power factor correction (PFC) converter circuits are non-linear systems due to the contribution of their multiplier. This non-linearity causes difficulties in analysis and design. Models that reduce the system to a linear system involve considerable approximation, and produce results that are susceptible to instability problems. In this paper a piecewise affine (PWA) system is introduced for describing the nonlinear averaged model. Then robust output feedback controllers are established in terms of the linear matrix inequality (LMI). Simulation and experiments results show the effectiveness of the proposed control method.

변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법 (Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach)

  • 김준기;양승협;방경호;박홍배
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.181-186
    • /
    • 2012
  • 본 논문에서는 변수 불확실성과 필터이득 섭동을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계기법을 제안한다. 필터가 존재할 충분조건과 견실비약성 $H_{\infty}$ 필터 설계기법을 선형행렬부등식 (LMI: Linear Matrix Inequality 접근법으로 제안하고 시스템과 필터의 불확실성을 매개변수화 선형행렬부등식(PLMI: Parameterized Linear Matrix Inequality)으로 구조화된 불확실성의 형태로 표현한 후 Lyapunov 함수를 통해 시스템의 불확실성과 더불어 필터이득섭동을 고려한 칼만형 $H_{\infty}$ 필터가 존재할 충분조건과 필터설계기법을 PLMI 형태로 보인다. PLMI는 무한개의 LMI의 형태로 나타나므로 완화기법(relaxation technique)을 적용하여 유한개의 LMI의 형태로 변환한 후 견실하고 최적화된 필터이득과 필터섭동범위를 계산하고, 예제와 모의실험을 통해 제시된 필터의 타당성을 검증한다.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 안정화 제어 응용 (Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Application to Stabilization Control)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.88-95
    • /
    • 2006
  • In this paper, the gain-scheduled control design proposed in the previous paper has been applied to a target tracking system. In such system, it is needed to attenuate disturbance effectively as long as control input satisfies the given constraint on its magnitude. The scheduled gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain and the scheduled gain control with constant Q matrix cases.

LMI 가능성 문제를 위한 타원 알고리즘의 개선 (An improved ellipsoid algorithm for LMI feasibility problems)

  • 방대인;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.188-192
    • /
    • 2002
  • The ellipsoid algorithm solves some feasibility(or optimization) problems with LMI(Linear Matrix Inequality) constraint in polynomial time. Recently, it has been replaced by interior point algorithm due to its slow convergence and incapability of verifying feasibility. This paper proposes a method to improve its convergence by using the deep-cut method of linear programming. Simulation results show that the improved algorithm is more effective than the original one.

  • PDF

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어 (Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input)

  • 강민석;윤우현
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.