• Title/Summary/Keyword: LM tests

Search Result 45, Processing Time 0.03 seconds

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF

In vitro plantlets regeneration by multi-shoots induction and rooting in Chamaecyparis obtusa (편백의 다신초 유도 및 발근을 통한 식물체 재분화)

  • Kim, Ji Ah;Lee, Na-Nyum;Kim, Yong Wook
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A protocol for the in vitro propagation of Chamaecyparis obtusa was established in the present study. Multi-shoots were initiated from apical shoot explants from germinants after 10 weeks of culture on Litvay medium (LM) supplemented with different concentrations of cytokinin. The effects of pre-treatment with high concentrations of cytokinin and varying concentrations (0.2 to 5.0 mg/L) of zeatin on in vitro shoot elongation and shoot multiplication were investigated. Optimal shoot growth was achieved on LM medium, with over 10-mm shoots after 10 weeks of culture. In the anti-browning tests, ethanesulfonic acid triggered the least browning in the shoot tips. The highest multi-shoot induction was observed in the 0.5-mg/L zeatin treatments, which yielded 80% induction of shoots after 10 weeks of culture, and maximum shoot elongation was observed in the LM basal medium without the hormone. The highest rooting rates were 65% under 0.2 mg/L indole-3-butyric acid.

Effects of Cu and B on Effective Grain Size and Low-Temperature Toughness of Thermo-Mechanically Processed High-Strength Bainitic Steels (TMCP로 제조된 고강도 베이나이트강의 유효결정립도와 저온인성에 미치는 Cu와 B의 영향)

  • Lee, Seung-Yong;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.520-525
    • /
    • 2014
  • Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.

Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models

  • Yeghnem, Redha;Guerroudj, Hicham Zakaria;Amar, Lemya Hanifi Hachemi;Meftah, Sid Ahmed;Benyoucef, Samir;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.579-588
    • /
    • 2017
  • Creep and shrinkage are the main types of volume change with time in concrete. These changes cause deflection, cracking and stresses that affect durability, serviceability, long-term reliability and structural integrity of civil engineering infrastructure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) plates, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by three commonly used international "code type" models. The assessed are the: CEB-FIP MC 90 model, ACI 209 model and Bazant & Baweja (B3) model. The time-dependent behavior was investigated to analyze their seismic behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to demonstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements and eigenfrequencies modes.

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

Verification of Bonding Force between PVP Dielectric Layer and PDMS for Application of Flexible Capacitive-type Touch Sensor with Large Dynamic Range (넓은 다이내믹 레인지의 유연 촉각센서 적용을 위한 PVP 유전층과 PDMS 접착력 검증)

  • Won, Dong-Joon;Huh, Myoung;Kim, Joonwon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.140-145
    • /
    • 2016
  • In this paper, we fabricate arrayed-type flexible capacitive touch sensor using liquid metal (LM) droplets (4 mm spatial resolution). Poly-4-vinylphenol (PVP) layer is used as a dielectric layer on the electrode patterned Polyethylene naphthalate (PEN) film. Bonding tests between hydroxyl group (-OH) on the PVP film and polydimethylsiloxane (PDMS) are conducted in a various $O_2$ plasma treatment conditions. Through the tests, we can confirm that non-$O_2$ plasma treated PVP layer and $O_2$ plasma treated PDMS can make a chemical bond. To measure dynamic range of the device, one-cell experiments are conducted and we confirmed that the fabricated device has a large dynamic range (~60 pF).

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.

Correlation of Binder GPC Characteristics and Mechanical Properties of Hot-Mix Recycled Asphalt Mixtures (재생혼합물의 바인더 GPC특성과 역학적 특성과의 상관성 연구)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Cho, Mun-Jin;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.11-20
    • /
    • 2005
  • This study examined the correlation between mechanical properties and LMS(Large molecular size) of binders in hot-recycled asphalt mixtures. Hot-recycled asphalt mixtures were manufactured by various mixing methods. Laboratory tests including indirect tensile strength, wheel tracking test and Kim test were performed for each recycled mixture. Gel-permeation chromatography (GPC) analysis was performed for the binders coated on virgin and old (RAP) aggregates separately. For the purpose of binder aging analysis, a round-shaped virgin coarse aggregates (13mm gravel) were introduced in recycled mixtures. This makes possible to distinguish the virgin aggregates from RAP aggregates in recycled mixtures for GPC sampling. Results of GPC showed that there was significant difference in aging level between the binder coated on RAP and that of virgin aggregates in the same recycled mixture. Regression analysis was performed to correlate mechanical properties to LMS ratio. Results showed that most of the mechanical properties had relatively good correlation with LMS. This trend agree with LMS increase up to some degree, but fails for further LMS increase.

  • PDF