• Title/Summary/Keyword: LINEAR REGRESSION

Search Result 4,983, Processing Time 0.027 seconds

Bayes Estimation in a Hierarchical Linear Model

  • Park, Kuey-Chung;Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the problem of estimating a vector of unknown regression coefficients under the sum of squared error losses in a hierarchical linear model, we propose the hierarchical Bayes estimator of a vector of unknown regression coefficients in a hierarchical linear model, and then prove the admissibility of this estimator using Blyth's (196\51) method.

  • PDF

Evaluation of the heat island in transition zone of three cities in Kyungpook, Korea (추이대(推移帶)를 중심으로 한 경상북도 3개 도시의 열섬 평가)

  • Park, In Hwan;Jang, Gab Sue;Kim, Jong Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 1999
  • This study analyzed the relationship between NDVI(Normalized Difference Vegetation Index) and urban heat island in three cities: Daegu, Kyungju, and Pohang for understanding the degree of nature conservation concentrating in the transition zone of them. Daegu city is the third city in Korea which has a dense population. Kyungju is a traditional city which has good nature. Pohang is an industrial city which has those of characters of Daegu and Kyungju. Landsat 1M data in May 17, 1997 were used for the analysis of heat island. There were about four theoretical models to estimate the surface temperature from TM data: Two-point linear model, Linear regression model, Quadratic regression model, and Cubic regression model. In this study, Linear regression model had been utilized to analyze the urban heat island. On the resultant images, the transition zone of Daegu was urbanized more extremely than those of other two cities. It is thought that the analysis of relationship between NDVI and surface temperature, used in this study, is regarded as one of effective methodologies for urban-environmental detection from satellite imageries.

  • PDF

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • Lee, Jae-Ha;Lee, Jin-Hyeon;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

A comparison study of multiple linear quantile regression using non-crossing constraints (비교차 제약식을 이용한 다중 선형 분위수 회귀모형에 관한 비교연구)

  • Bang, Sungwan;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.773-786
    • /
    • 2016
  • Multiple quantile regression that simultaneously estimate several conditional quantiles of response given covariates can provide a comprehensive information about the relationship between the response and covariates. Some quantile estimates can cross if conditional quantiles are separately estimated; however, this violates the definition of the quantile. To tackle this issue, multiple quantile regression with non-crossing constraints have been developed. In this paper, we carry out a comparison study on several popular methods for non-crossing multiple linear quantile regression to provide practical guidance on its application.

The 24 Hourly Load Forecasting of the Election Day Using the Load Variation Rate (부하변동율을 이용한 선거일의 24시간 수요예측)

  • Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1041-1045
    • /
    • 2010
  • Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.

A Study of Weighing System to Apply into Hydraulic Excavator with CNN (CNN기반 굴삭기용 부하 측정 시스템 구현을 위한 연구)

  • Hwang Hun Jeong;Young Il Shin;Jin Ho Lee;Ki Yong Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.133-139
    • /
    • 2023
  • A weighing system calculates the bucket's excavation amount of an excavator. Usually, the excavation amount is computed by the excavator's motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation's parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process. This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn't need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator's loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.

Price Determinant Factors of Artworks and Prediction Model Based on Machine Learning (작품 가격 추정을 위한 기계 학습 기법의 응용 및 가격 결정 요인 분석)

  • Jang, Dongryul;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.687-700
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the interaction effects between price determinants of artworks. We expand the methodology in art market by applying machine learning techniques to estimate the price of artworks and compare linear regression and machine learning in terms of prediction accuracy. Methods: Moderated regression analysis was performed to verify the interaction effects of artistic characteristics on price. The moderating effects were studied by confirming the significance level of the interaction terms of the derived regression equation. In order to derive price estimation model, we use multiple linear regression analysis, which is a parametric statistical technique, and k-nearest neighbor (kNN) regression, which is a nonparametric statistical technique in machine learning methods. Results: Mostly, the influences of the price determinants of art are different according to the auction types and the artist 's reputation. However, the auction type did not control the influence of the genre of the work on the price. As a result of the analysis, the kNN regression was superior to the linear regression analysis based on the prediction accuracy. Conclusion: It provides a theoretical basis for the complexity that exists between pricing determinant factors of artworks. In addition, the nonparametric models and machine learning techniques as well as existing parameter models are implemented to estimate the artworks' price.

Orographic Precipitation Analysis with Regional Frequency Analysis and Multiple Linear Regression (지역빈도해석 및 다중회귀분석을 이용한 산악형 강수해석)

  • Yun, Hye-Seon;Um, Myoung-Jin;Cho, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.465-480
    • /
    • 2009
  • In this study, single and multiple linear regression model were used to derive the relationship between precipitation and altitude, latitude and longitude in Jejudo. The single linear regression analysis was focused on whether orographic effect was existed in Jejudo by annual average precipitation, and the multiple linear regression analysis on whether orographic effect was applied to each duration and return period of quantile from regional frequency analysis by index flood method. As results of the regression analysis, it shows the relationship between altitude and precipitation strongly form a linear relationship as the length of duration and return period increase. The multiple linear regression precipitation estimates(which used altitude, latitude, and longitude information) were found to be more reasonable than estimates obtained using altitude only or altitude-latitude and altitude-longitude. Especially, as results of spatial distribution analysis by kriging method using GIS, it also provides realistic estimates for precipitation that the precipitation was occurred the southeast region as real climate of Jejudo. However, the accuracy of regression model was decrease which derived a short duration of precipitation or estimated high region precipitation even had long duration. Consequently the other factor caused orographic effect would be needed to estimate precipitation to improve accuracy.

Mean Lifetime Estimation with Censored Observations

  • Kim, Jin-Heum;Kim, Jee-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.299-308
    • /
    • 1997
  • In the simple linear regression model Y = .alpha.$_{0}$ + .beta.$_{0}$Z + .epsilon. under the right censorship of the response variables, the estimation of the mean lifetime E(Y) is an interesting problem. In this paper we propose a method of estimating E(Y) based on the observations modified by the arguments of Buckley and James (1979). It is shown that the proposed estimator is consistent and our proposed procedure in the simple linear regression case can be naturally extended to the multiple linear regression. Finally, we perform simulation studies to compare the proposed estimator with the estimator introduced by Gill (1983).83).

  • PDF