In the problem of estimating a vector of unknown regression coefficients under the sum of squared error losses in a hierarchical linear model, we propose the hierarchical Bayes estimator of a vector of unknown regression coefficients in a hierarchical linear model, and then prove the admissibility of this estimator using Blyth's (196\51) method.
This study analyzed the relationship between NDVI(Normalized Difference Vegetation Index) and urban heat island in three cities: Daegu, Kyungju, and Pohang for understanding the degree of nature conservation concentrating in the transition zone of them. Daegu city is the third city in Korea which has a dense population. Kyungju is a traditional city which has good nature. Pohang is an industrial city which has those of characters of Daegu and Kyungju. Landsat 1M data in May 17, 1997 were used for the analysis of heat island. There were about four theoretical models to estimate the surface temperature from TM data: Two-point linear model, Linear regression model, Quadratic regression model, and Cubic regression model. In this study, Linear regression model had been utilized to analyze the urban heat island. On the resultant images, the transition zone of Daegu was urbanized more extremely than those of other two cities. It is thought that the analysis of relationship between NDVI and surface temperature, used in this study, is regarded as one of effective methodologies for urban-environmental detection from satellite imageries.
Communications for Statistical Applications and Methods
/
v.25
no.2
/
pp.199-215
/
2018
Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.
Transactions of the Korean Society of Mechanical Engineers A
/
v.24
no.10
s.181
/
pp.2589-2596
/
2000
As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.
Multiple quantile regression that simultaneously estimate several conditional quantiles of response given covariates can provide a comprehensive information about the relationship between the response and covariates. Some quantile estimates can cross if conditional quantiles are separately estimated; however, this violates the definition of the quantile. To tackle this issue, multiple quantile regression with non-crossing constraints have been developed. In this paper, we carry out a comparison study on several popular methods for non-crossing multiple linear quantile regression to provide practical guidance on its application.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.6
/
pp.1041-1045
/
2010
Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.
Hwang Hun Jeong;Young Il Shin;Jin Ho Lee;Ki Yong Cho
Journal of Drive and Control
/
v.20
no.4
/
pp.133-139
/
2023
A weighing system calculates the bucket's excavation amount of an excavator. Usually, the excavation amount is computed by the excavator's motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation's parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process. This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn't need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator's loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.
Purpose: The purpose of this study is to investigate the interaction effects between price determinants of artworks. We expand the methodology in art market by applying machine learning techniques to estimate the price of artworks and compare linear regression and machine learning in terms of prediction accuracy. Methods: Moderated regression analysis was performed to verify the interaction effects of artistic characteristics on price. The moderating effects were studied by confirming the significance level of the interaction terms of the derived regression equation. In order to derive price estimation model, we use multiple linear regression analysis, which is a parametric statistical technique, and k-nearest neighbor (kNN) regression, which is a nonparametric statistical technique in machine learning methods. Results: Mostly, the influences of the price determinants of art are different according to the auction types and the artist 's reputation. However, the auction type did not control the influence of the genre of the work on the price. As a result of the analysis, the kNN regression was superior to the linear regression analysis based on the prediction accuracy. Conclusion: It provides a theoretical basis for the complexity that exists between pricing determinant factors of artworks. In addition, the nonparametric models and machine learning techniques as well as existing parameter models are implemented to estimate the artworks' price.
In this study, single and multiple linear regression model were used to derive the relationship between precipitation and altitude, latitude and longitude in Jejudo. The single linear regression analysis was focused on whether orographic effect was existed in Jejudo by annual average precipitation, and the multiple linear regression analysis on whether orographic effect was applied to each duration and return period of quantile from regional frequency analysis by index flood method. As results of the regression analysis, it shows the relationship between altitude and precipitation strongly form a linear relationship as the length of duration and return period increase. The multiple linear regression precipitation estimates(which used altitude, latitude, and longitude information) were found to be more reasonable than estimates obtained using altitude only or altitude-latitude and altitude-longitude. Especially, as results of spatial distribution analysis by kriging method using GIS, it also provides realistic estimates for precipitation that the precipitation was occurred the southeast region as real climate of Jejudo. However, the accuracy of regression model was decrease which derived a short duration of precipitation or estimated high region precipitation even had long duration. Consequently the other factor caused orographic effect would be needed to estimate precipitation to improve accuracy.
In the simple linear regression model Y = .alpha.$_{0}$ + .beta.$_{0}$Z + .epsilon. under the right censorship of the response variables, the estimation of the mean lifetime E(Y) is an interesting problem. In this paper we propose a method of estimating E(Y) based on the observations modified by the arguments of Buckley and James (1979). It is shown that the proposed estimator is consistent and our proposed procedure in the simple linear regression case can be naturally extended to the multiple linear regression. Finally, we perform simulation studies to compare the proposed estimator with the estimator introduced by Gill (1983).83).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.