• Title/Summary/Keyword: LIDAR Data

Search Result 340, Processing Time 0.028 seconds

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Coastline Extraction from Airborne LiDAR Data (항공라이다데이터를 이용한 해안선 추출)

  • Kim Seong-Joon;Lee Im-Pyeong;Kim Yong-Cheol;Cheong Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.457-462
    • /
    • 2006
  • Coastline has been considered as fundamental geographic information of a nation. Recently, the coastlines of higher resolution and accuracy with less update period ever than before are increasingly required. This requirement cannot be easily satisfied with the most traditional methods based on field survey such as leveling or GPS measurements. The newly developed airborne LIDAR system can be used as a promising alternative since it rapidly acquire numerous three-dimensional points densely sampled from the terrain around the coastline. Hence, in this study we developed a nearly automatic method to extract the coastline from LIDAR data and applied it to real data to verify its performance. From the comparison of the extracted coastlines with those from a digital map, we conclude that the proposed method can provide more accurate and precise lines.

  • PDF

A Proposal for Generation of Digital Elevation Models in Korea

  • Lee, Chang-Kyung;Park, Byung-Gil;Kim, Young-An;Min Heo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.73-81
    • /
    • 2004
  • National Geographic Information Institute (NGII) in Korea, through National Geographic Information System (NGIS) Program, has prepared to generate and disseminate digital elevation data for Korea. This is a pilot research to propose a policy for generation, maintenance, and supply of Korea Digital Elevation Data (KDED). Customer demands for accuracy and resolution of DEM was surveyed through questionnaire. In order to investigate the quality, the technical efficiency and the production cost, a tentative DEM in a small test site was generated based on digital topographic maps (original paper map scale 1 :5,000), analytical plotter, and LIDAR. Accuracy standard for KDED was derived based on source data and generation methods. As results of this research, we recommend uniformly spaced grid model for KDED. Its preferable grid space is 5m in urban and its vicinity; and 10m in field and mountainous area. LIDAR has been valuated as a proper KDED generation method fulfilling customers demand for the accuracy.

  • PDF

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Comprehensive Comparisons among LIDAR Fitering Algorithms for the Classification of Ground and Non-ground Points (지면.비지면점 분류를 위한 라이다 필터링 알고리즘의 종합적인 비교)

  • Kim, Eui-Myoung;Cho, Du-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • Filtering process that separates ground and non-ground points from LIDAR data is important in order to create the digital elevation model (DEM) or extract objects on the ground. The purpose of this research is to select the most effective filtering algorithm through qualitative and quantitative analysis for the existing filtering method used to extract ground points from LIDAR data. For this, four filtering methods including Adaptive TIN(ATIN), Perspective Center-based filtering method(PC), Elevation Threshold with Expand Window(ETEW) and Progressive Morphology(PM) were applied to mountain area, urban area and the area where building and mountains exist together. Then the characteristics for each method were analyzed. For the qualitative comparison of four filtering methods used for the research, visual method was applied after creating shaded relief image. For the quantitative comparison, an absolute comparison was conducted by using control points observed by GPS and a relative comparison was conducted by the digital elevation model of the National Geographic Information Institute. Through the filtering experiment of the LIDAR data, the Adaptive TIN algorithm extracted the ground points in mountain area and urban area most effectively. In the area where buildings and mountains coexist, progressive morphology algorithm generated the best result. In addition, as a result of qualitative and quantitative comparisons, the applicable filtering algorithm regardless of topographic characteristics appeared to be ATIN algorithm.

Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks (기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여)

  • Han, You-Kyung;Choi, Jae-Wan;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.289-297
    • /
    • 2009
  • In the paper, we propose the methodology to extract training dataset automatically for supervised classification of road networks. For the preprocessing, we co-register the airborne photos, LIDAR data and large-scale digital maps and then, create orthophotos and intensity images. By overlaying the large-scale digital maps onto generated images, we can extract the initial training dataset for the supervised classification of road networks. However, the initial training information is distorted because there are errors propagated from registration process and, also, there are generally various objects in the road networks such as asphalt, road marks, vegetation, cars and so on. As such, to generate the training information only for the road surface, we apply the Expectation Maximization technique and finally, extract the training dataset of the road surface. For the accuracy test, we compare the training dataset with manually extracted ones. Through the statistical tests, we can identify that the developed method is valid.

Experimental Comparative Analysis of Terrestrial Lidar Data and Cadastral Data for the Calculation of the Slope Area of Highland Agriculture Region (고랭지 농업지역의 경지면적 산출을 위한 지상라이다 데이터와 지적성과의 실험적 비교 분석)

  • Lee, Ho-Hyun;Lee, Jung-Il;Oh, Min-Kyun;Lee, Kyung-Do
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.137-153
    • /
    • 2016
  • The price of agricultural products has changed from year to year, the m ajor c ause o f price fluctuation is the imbalance of supply and demand. Materials which are mainly used in korean cabbage production volume is the forecast model, using the cadastral result, slope calculation is impossible to achieved. For this reason, this implies the drastic decrease of prices and the prediction of supply and demand of field crops that is cultivated in a highland slope area, this situation is being repeated. Therefore, the target area of this research is the slopes of high land, by using 2D and 3D Lidar data for the analysis of the cultivated area. Experiment was carried out in the same area to compare the data differences. The rate of change in the area of slope is quantitatively increasing presented by the regression model. An alternative methodology that can improve the reliability of the calculated slope area using 2D is through cadastral map.

Daytime Temperature Measuring LIDAR System by Using Rotational Raman Signal (회전 라만 신호를 이용한 낮 시간 온도측정 라이다)

  • Yoon, Moonsang;Kim, Dukhyeon;Park, Sunho;Sin, MyeongJae;Kim, Yonggi;Jung, Haedoo
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.159-166
    • /
    • 2012
  • We have developed a daytime measuring rotational Raman LIDAR system for temperature measurement. To decrease the background signal from sunlight, we have designed and installed narrow band (0.5 nm) and high rejection ($10^{-6}$) rate band pass filter system using a grating and an interference filter. We calibrated our system by comparing our horizontal temperature profile and KMA (Korea Meteorological Administration) data. We have found that our temperature profile has a good correlation with KMA data within our theoretically expected variance. And we have used these calibration values in obtaining a vertical temperature distribution. To check our system, we also have compared our vertical temperature data with US standard atmospheric temperature profile. We also have compared our temperature profile with sonde data.

Extraction of Spatial Information of Tree Using LIDAR Data in Urban Area (라이다 자료를 이용한 도시지역의 수목공간정보 추출)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • In situation that carbon dioxide emissions are being increased as urbanization, urban green space is being promoted as an alternative to find solution for these problems. In urban areas, trees have the ability to reduce carbon dioxide as well as to be aesthetic effect. In this study, we proposed the methodology which uses only LIDAR data in order to extract these trees information effectively. To improve the operational efficiency according to the extraction of trees, the proposed methodology was carried out using multiple data processing such as point, polygon and raster. Because the existing NDSM(Normalized Digital Surface Model) contains both the building and tree information, it has the problems of high complexity of data processing for extracting trees. Therefore, in order to improve these problems, this study used modified NDSM which was removed estimate regions of building. To evaluate the performance of the proposed methodology, three different zones which coexist buildings and trees within urban areas were selected and the accuracy of extracted trees was compared with the image taken by digital camera.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF