Browse > Article
http://dx.doi.org/10.3807/KJOP.2012.23.4.159

Daytime Temperature Measuring LIDAR System by Using Rotational Raman Signal  

Yoon, Moonsang (Department of Physics, Kongju National University)
Kim, Dukhyeon (Division of Cultural Studies, Hanbat National University)
Park, Sunho (Division of Cultural Studies, Hanbat National University)
Sin, MyeongJae (Division of Cultural Studies, Hanbat National University)
Kim, Yonggi (Department of Physics, Kongju National University)
Jung, Haedoo (Division of Cultural Studies, Hanbat National University)
Publication Information
Korean Journal of Optics and Photonics / v.23, no.4, 2012 , pp. 159-166 More about this Journal
Abstract
We have developed a daytime measuring rotational Raman LIDAR system for temperature measurement. To decrease the background signal from sunlight, we have designed and installed narrow band (0.5 nm) and high rejection ($10^{-6}$) rate band pass filter system using a grating and an interference filter. We calibrated our system by comparing our horizontal temperature profile and KMA (Korea Meteorological Administration) data. We have found that our temperature profile has a good correlation with KMA data within our theoretically expected variance. And we have used these calibration values in obtaining a vertical temperature distribution. To check our system, we also have compared our vertical temperature data with US standard atmospheric temperature profile. We also have compared our temperature profile with sonde data.
Keywords
LIDAR(Light detection and ranging); Temperature; Rotational Raman;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. Hua, J. Liu, K. Uchida, and T. Kobayashi, "Daytime temperature profiling of planetary boundary layer with ultraviolet rotational raman LIDAR," Appl. Phys. 46, 5849-5852 (2007).
2 A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, "LIDAR monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. 55, 29-34 (1992).   DOI
3 D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, "New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients," Appl. Phys. 82, 1-4 (2006).
4 M. R. Gross, T. J. McGee, R. A. Ferrare, U. N. Singh, and P. Kimvilakani, "Temperature measurements made with a combined Rayleigh-Mie and raman LIDAR," Appl. Opt. 36, 24 (1997).
5 G. Baumgarten, "Twin Doppler Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 2779 (2010).   DOI
6 M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Hoffner, "Temperature LIDAR measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering," Atmos. Meas. Tech. Discuss. 4, 923 (2004).
7 G. Baumgarten, "Dopper Rayleigh/Mie/Raman LIDAR for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. Discuss. 3, 1509 (2010).   DOI
8 K. V. Chance and R. J. D. Spurr, "Ring effect studies : Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224 (1997).   DOI
9 W. Huang, W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, "Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge maneto-optic filter in a multi-frequency Dopper LIDAR," Opt. Lett. 34, 1552 (2009).   DOI
10 M. Jiandong, X. Zhen, W. Min, H. Dengxin, and G. Fei, "Ultraviolet rotational raman LIDAR for high accuracy temperature profiling of the planetary boundary layer," Proc. SPIE 7130, 71301E, 1-6 (2008).
11 D. Kim and H. Cha, "Rotational Raman LIDAR: design and performance test of meteorological parameters (aerosol backscattering coefficients and temperature)," J. Korean Phys. Soc. 51, 352 (2007).   과학기술학회마을   DOI   ScienceOn
12 D. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, "Rotational raman LIDAR to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geosci. Remote Sens. 31, 1 (1993).
13 D. Kim, S. Kwon, H. Cha, Y. Kim, and J. Sunwoo, "A newly designed single etalon double edge Doppler wind LIDAR receiving optical system," Rev. Sci. instrum. 19, 123111 (2008).
14 A. J. Mcdonald, Botan, and X. Chu, "Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COMIC/FORMOSAT-3 and Rayleigh LIDAR observations," Geophys. Res. 115, 19128 (2010).   DOI
15 X. Chu, "Temperature LIDAR (6) integration technique," http://superLIDAR.colorado.edu/Classes/LIDAR2011/LIDARLecture16.pdf (2011).
16 A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational raman LIDAR by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000).   DOI
17 S. H. Melfi, "Remote measurements of the atmosphere using raman scattering," Appl. Opt. 11, 1605-1610 (1972).   DOI
18 J. Mao, L. Hu, D. Hua, F. Gao, and M. Wu, "Pure rotational raman LIDAR with fiber bragg grating for temperature profiling of the atmospheric boundary layer," Opt. Applicata 38, 715-726 (2008).
19 M. Radlach, A. Behrendt, and V. Wulfmeyer, "Scanning rotational raman LIDAR at 355 nm for the measurement of tropospheric temperature fields," Atmos. Chem. Phys. 8, 159 (2008).
20 J. Zeyn, W. Lahmann, and C. Weikamp, "Remote daytime measurements of tropospheric temperature profiles with a rotational raman LIDAR," Pot. Lett. 21, 1301 (1996).
21 C. G. Park, J. H. Baek, and J. H. Cho, "Analysis on characteristics of radiosonde bias using GPS precipitable water vapor," J. Astron. Space Sci. 27, 213-220 (2010).   과학기술학회마을   DOI
22 A. Cohen, M. Kleiman, and J. Cooney, "LIDAR measurements of rotational raman and double scattering," Appl. Opt. 17, 1905-1910 (1978).   DOI
23 J. E. Kalshoven Jr., C. L. Korb, G. K. Schwemmer, and M. Dombrowski, "Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen," Appl. Opt. 20, 1967-1971 (1981).   DOI
24 M. Endemann and R. L. Byer, "Simultaneous measurements of atmospheric temperature and humidity using a continously tunable IR LIDAR," Appl. Opt. 20, 3211 (1981).   DOI
25 J. Ha and K. D. Park, "Estimation of water vapor vertical profiles in the atmosphere using GPS measurements," Atmosphere 19, 289-296 (2009).   과학기술학회마을
26 D. Renaut and R. Capitini, "Boundary-layer water vapor probing with a solar-blind Raman LIDAR: validations, meteorological observations and prospects," J. Atmos. Ocean. Technol. 5, 585 (1988).   DOI
27 D. H. Kim, H. K. Cha, and S. Bobronikov, "Measurement of aerosol backscattering coefficient using multichannel rotational raman scattering," J. Korean Phys. Soc. 39, 838 (2001).
28 P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, "Rotation raman LIDAR measurements of atmospheric temperature in the UV," Geophys. Res. Letters 31, 1106 (2004).   DOI
29 D. Kim, H. Cha, J. Lee, and S. Bobronikov, "Pure rotational Raman LIDAR for atmospheric temperature measurements," J. Korean Phys. Soc. 39, 838 (2001).   과학기술학회마을