• Title/Summary/Keyword: LI4

Search Result 6,356, Processing Time 0.031 seconds

Electrochamical Properties of $LiFePO_4$ Electrodes for Lithium Polymer Battery (리튬 폴리머 전지 $LiFePO_4$의 전기화학적 특성)

  • Kong, Ming-Zhe;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.5-9
    • /
    • 2005
  • $LiFePO_4$ is a potential candidate for the cathode material of the lithium polymer batteries. $LiFePO_4$ cathode active materials were synthesized by coating on the $LiFePO_4$ was tried using $TiO_2$ and corbon in oreder to increase cyclic performance and electronic conductivity. Highly dispersed on the particles enhances the electronic conductivity and increases the capacity. For lithium polymer battery applications, $LiFePO_4$/SPE/Li and $LiFePO_4$-$TiO_2$/SPE/Li 'cells were characterized electrochemically by cyclic volatammetry and charge/discharge cycling. The $LiFePO_4$-carbon-$TiO_2$ cathode in PVDF-PC-EC-$LiCIO_4$ electrolyte showed high capacity at high current density.

  • PDF

Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Oh, Min-Wook;Han, Byung-Chan
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • The formation of Li-Si-O phases, $Li_4SiO_4$ and $Li_2SiO_3$ from the starting materials SiO and $Li_2O$ are analyzed using Vienna Ab-initio Simulation (VASP) package and the total energies of Li-Si-O compounds are evaluated using Projector Augmented Wave (PAW) method and correlated the structural characteristics of the binary system SiO-$Li_2O$ with experimental data from electrochemical method. Despite $Li_2SiO_3$ becomes stable phase by virtue of lowest formation energy calculated through VASP, the experimental method shows presence of $Li_4SiO_4$ as the only product formed when SiO and $Li_2O$ reacts during slow heating to reach $550^{\circ}C$ and found no evidence for the formation of $Li_2SiO_3$. Also, higher density of $Li_4SiO_4$(2.42 g $ml^{-1}$) compared to the compositional mixture $1SiO_2-2Li_2O$ (2.226 g $ml^{-1}$) and better cycle capacity observed through experiment proves that $Li_4SiO_4$ as the most stable anode supported by better cycleabilityfor lithium ion battery remains as paradox from the point of view of VASP calculations.

Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries (리튬폴리머전지용 정극활물질 LiFePO4의 전기화학적 특성)

  • Kong Ming-Zhe;Kim Hyun-Soo;Gu Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.519-523
    • /
    • 2006
  • $LiFePO_4$ has been received attention as a potential cathode material for the lithium secondary batteries. In our study, $LiFePO_4$ cathode active materials were synthesized by a solid-state reaction. It was modified by coating $TiO_2$ and carbon in order to enhance cyclic performance and electronic conductivity. $TiO_2$ and carbon coatings on $LiFePO_4$ materials enhanced the electronic conductivity and its charge/discharge capacity. For lithium polymer battery applications, $LiFePO_4$/solid polymer electrolyte (SPE)/Li and $LiFePO_{4}-TiO_{2}/SPE/Li$ cells were characterized by a cyclic voltammetry and charge/discharge cycling. The electrode with $LiFePO_{4}-carbon-TiO_{2}$ in PVDF-PC-EC-$LiClO_{4}$ electrolyte showed promising capacity of above 100 mAh/g at 1C rate.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

A Study on Improvement of the Physical Properties of 4 Component Working Fluid in Gas Fired Absorption Chillers (가스흡수식 냉방기용 4성분계 작동매체의 물성 향상 연구)

  • Baek, Young-Soon;Oh, Young-Sam;Lee, Yong-Won;Park, Dal-Ryung;Koo, Ki-Kap
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.400-406
    • /
    • 1999
  • In an effort to obtain high efficiency in gas fired absorption chillers, a new working fluid has been developed with thc addition of the component of $LiNO_3$, LiCl and LiI to the conventional solution of $LiBr-H_2O$. The solubility and vapor pressure of the 4 component working fluid developed in this work were measured and compared to the results of $LiBr-H_2O$ solution. It was observed that there exists an optimal mole ratio of the inorganic salts in terms of solubility. The mole ratio of LiBr, $LiNO_3$ and LiCl was found to be around 5:1:1~2 in the $LiBr-LiNO_3-LiCl-H_2O$ mixture, and in the case of $LiBr-LiO_3-Lil-H_2O$ and $LiBr-Lil-LiCl-H_2O$ mixtures, the mole ratio of LiBr, $LiNO_3$ and Lil/ LiBr, LiI and LiCl were found to be around 5:1:1 and 5:1:0.5~1 respectively. The vapor pressure of the 4 component working fluid of the optimal mole ratio was increascd with adding the component of $LiNO_3$, LiCl and LiI except for $LiBr-LiNO_3-LiCl-H_2O$ mixture. The absorption capacity of $LiBr-LiNO_3-LiCl-H_2O$ mixture was obtained higher than that of $LiBr-H_2O$ mixture.

  • PDF

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

Electrochemical Performances of LiMn2O4:Al Synthesized by Solid State Method (고상법으로 합성한 LiMn2O4:Al의 전기화학적 특성)

  • Park, Hye-Jung;Park, Sun-Min;Roh, Gwang-Chul;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Al doped $LiMn_2O_4$ ($LiMn_2O_4:Al$) synthesized by several Al doping process and Solid State method. The Al contents in $Mn_{1-x}Al_xO_2$ for $LiMn_2O_4:Al$ were analyzed 1.7 wt% by EDS. The $LiMn_2O_4:Al$ confirmed cubic spinel structure and approximately 5 ${\mu}m$ particles regardless of three kinds of doping process by solid state method. In the result of electrochemical performances, initial discharge capacity had 115 mAh/g in case of $LiMn_2O_4$ and 111 mAh/g of $LiMn_2O_4:Al$ after 100th cycle at room temperature. But the capacity retention results showed that $LiMn_2O_4$ and $LiMn_2O_4:Al$ were 44% and 69% respectively in the 100th cycle at 60$^{\circ}C$. Therefore we are confirmed that $LiMn_2O_4:Al$ increased the capacity retention about 25% than $LiMn_2O_4$, thus the effect of Al dopping on $LiMn_2O_4$ capacity retention.

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik;Kim, Soo;Cho, Byung-Won;Lee, Kwan-Young;Chung, Kyung Yoon;Chang, Wonyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.433-436
    • /
    • 2013
  • Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF