• Title/Summary/Keyword: LES-WASS-2D

Search Result 21, Processing Time 0.024 seconds

Development of 3-D Hydrodynamical Model for Understanding Numerical Analysis of Density Current due to Salinity and Temperature and its Verification (염분과 온도차에 의한 밀도류 해석을 위한 3차원 동수역학적 수치모델의 개발 및 검증)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.859-871
    • /
    • 2014
  • In order to analyze the density current due to salt and temperature difference, this study develops new numerical model (LES-WASS-3D ver. 2.0) by introducing state equation for salt and temperature and 3D advection-diffusion equation to existing 3D numerical wave tank (LES-WASS-3D ver. 1.0). To verify the applicability, the newly-developed numerical model is analyzed comparing to the experimental result of existing numerical model. In the result, it well implement the behavior and vertical salt concentration of advected and diffused seawater as well as flow velocity and temperature of the discharged warm water. This confirms the validity and effectiveness of the developed numerical model.

On wave damping effect due to the crest width variation of a permeable submerged breakwater (투과성 잠제의 폭 변화에 따른 파랑감쇠 효과에 관하여)

  • Hur, Dong-Soo;Choi, Dong-Seok;Bae, Ki-Seong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.453-456
    • /
    • 2006
  • To examine the effect of shape and crest width variation of a permeable submerged breakwater on the wave energy dissipation, Two-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly WAve Structure Seabed interaction (hereafter, LES-WASS-2D) has been newly developed. A good agreement has been obtained by the comparison between the existing experimental results and LES-WASS-2D model's results for the permeable submerged breakwater. Moreover, based on the LES-WASS-2D model, the wave energy dissipation due to a permeable submerged breakwater are discussed for regular and irregular waves with relation to its crest width and shape.

  • PDF

Effects of Wave Action on Seawater Intrusion in Coastal Aquifer and Mitigation Strategies (파랑작용이 해안대수층의 해수침투에 미치는 영향 및 저감방안)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.47-59
    • /
    • 2017
  • This study conducted numerical simulations using LES-WASS-3D ver. 2.0 to analyze the seawater intrusion characteristics of the incident waves in a coastal aquifer. LES-WASS-3D directly analyzed the nonlinear interaction between the seawater and freshwater in a coastal aquifer, as well as the wave-current interaction in the coastal area. First, the LES-WASS-3D results were compared with the existing experimental results for the mean water level under wave action in the coastal aquifer and seawater penetration into the coastal aquifer. The mean water level, shape and position of the seawater-freshwater interface, and intrusion distance were well implemented in the results. This confirmed the validity and effectiveness of LES-WASS-3D. The overall seawater penetration distance increases in the coastal aquifer as a result of wave set-up and run-up in the swash zone caused by continuous wave actions, and it increases with the wave height and period. Furthermore, a numerical verification was performed by comparing the suggested existing structure and newly suggested curtain wall as a measure against seawater penetration. An existing underground dam showed a better effect with increased height. Additionally, the suggested curtain wall had a better effect when the embedded depth was increased.

The Reflection Characteristics of a Perforated Slit Caisson with Two Chambers (이중 유공슬릿 케이슨에 의한 반사특성)

  • Hur, Dong-Soo;Lee, Woo-Dong;Lee, Hyeon-Woo;Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2010
  • Recently, there has been an increase in the construction of various types of coastal structures for efficient wave dissipation, seawater exchange, and so on. Among these, a perforated slit caisson has been widely used to reduce the reflected wave energy and the wave pressure on the structure. Therefore, many studies on the wave force on a caisson, as well as the wave reflection from it, have been carried out with laboratory experiments and numerical analyses, considering it as a 2-D problem. However, because a structure like a perforated slit caisson has a variable 3-D shape, waves forces should be considered as a 3-D problem. Therefore, in this paper, a fully-nonlinear 3-D numerical model (LES-WASS-3D) is proposed to examine the reflection characteristics of a perforated slit caisson with two chambers. The numerical model, LES-WASS-3D, was verified in a 3-D wave field by a comparison with existing experimental data for wave reflection coefficients. Then, using the numerical results, the reflection from a perforated slit caisson with two chambers was examined in relation to wave steepness, chamber width, and the shape/porosity of perforated slit.

Characteristics of Surface and Internal Wave Propagation through Density Stratification (밀도성층을 통과하는 수면파 및 내부파의 전파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.819-830
    • /
    • 2016
  • Hydrodynamic characteristics of wave propagation through density stratification have not been identified in details. So this study conducted a numerical simulation using LES-WASS-3D ver. 2.0 for analysis of density current due to water temperature and salinity in order to analyze hydraulic characteristics under wave action in a two-layer density stratified fluid. For the validity and effectiveness of numerical wave tank used, it was compared and analyzed with the experiment to show waveform based on $3^{rd}$-order Stoke wave theory at the internal of a density stratification. Using the results obtained from numerical simulation, the surface and internal wave heights are reduced as the wave propagates in a two-layer density stratified water. And the surface or internal wave attenuation became more serious as the vorticities were increased by the velocity difference of wave propagation due to the upper-lower density difference around the interface of a density stratification. As well, the surface and internal wave attenuations became more serious with higher density difference and depth ratio between upper and lower layers when the wave propagates through a density stratification.

Effects of tsunami waveform on overtopping and inundation on a vertical seawall (직립호안에서 지진해일 파형이 월파와 침수에 미치는 영향)

  • Lee, Woodong;Kim, Jungouk;Park, Jongryul;Hur, Dongsoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.643-654
    • /
    • 2018
  • In order to generate the stable tsunami in a numerical wave tank, a two-dimensional numerical model, LES-WASS-2D has been introduced the non-reflected wave generation system for various tsunami waveforms. And then, comparing to existing experimental results it is revealed that computed results of the LES-WASS-2D are in good agreement with the experimental results on spatial and temporal tsunami waveforms in the vicinity of a seawall. It is shown that the applied model in this study is applicable to the numerical simulations on tsunami overtopping and inundation. Using the numerical results, the characteristics of overtopping and inundation on a seawall are also discussed with volume ratio of tsunami and relative tsunami height. The wider the tsunami waveform, tsunami overtopping quantity and inundation distances are linearly increased. Therefore, the hydraulic characteristics is highly likely to be underestimated against the real tsunami if the solitary wave of approximation theory is applied for the overtopping/inundation simulations due to a tsunami.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

Effect of the Slope Gradient of a Permeable Submerged Breakwater on Wave Field around It (투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향)

  • Hur, Dong Soo;Choi, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.249-259
    • /
    • 2008
  • The present paper studies the effect of the slope gradient of a fully permeable submerged breakwater using a newly developed numerical model that is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance terms, i.e. simulate directly WAve-Structure (submerged breakwater)-Sand seabed interaction and can determine the eddy viscosity with LES turbulence model in 2-Dimensional wave field (LES-WASS-2D). The developed model was validated through the comparison with an existing experimental data, and further used for various numerical experiments in oder to investigate the complicated hydrodynamics on the varying slope gradient of permeable submerged breakwater. We found an acceptable phenomenon, as we expect intuitively, that reflection and transmission coefficients decrease simultaneously as slope gradient decrease. In addition, the breaking point, the circulation flow and mean vorticity around a submerged breakwater are throughly discussed.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.

A Numerical Study on Tsunami Run-up Heights on Impermeable/Permeable Slope (투과성 및 불투과성 경사면 상에서 지진해일의 처오름 높이에 관한 수치적 검토)

  • Lee, Woo-Dong;Hur, Dong-Soo;Goo, Nam-Heon
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In order to examine the characteristics of tsunami run-up heights on impermeable/permeable slope, a numerical wave tank by upgrading LES-WASS-3D was used in this study. Then, the model were compared with existing hydraulic model test for its verification. The numerical results well reproduced experimental results of solitary wave deformation, propagation and run-up height under various conditions. Also, the numerical simulation with a slope boundary condition has been carried out to understand solitary wave run-up on impermeable/permeable slope. It is shown that the run-up heights on permeable slope is 52.64-63.2% smaller than those on the impermeable slope because of wave energy dissipation inside the porous media. In addition, it is revealed that the numerical results with slope boundary condition agreed well with experimental results in comparison with the results by using stair type boundary condition.