• Title/Summary/Keyword: LES Simulation

Search Result 427, Processing Time 0.028 seconds

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

Numerical Comparisons Between URANS and Hybrid RANS/LES at a High Reynolds Number Flow Using Unstructured Meshes

  • You, Ju-Yeol;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • In the present study, the turbulent flow fields around a circular cylinder at $Re=3.6{\times}10^6$ were investigated based on an unstructured mesh technique, and the comparisons between URANS(S-A, SST) and hybrid RANS/LES(DES, SAS) methods for the simulation of high Reynolds number flow have been conducted. For this purpose, unsteady characteristics of vortex shedding and time-averaged quantities were compared. A quasi-steady solution-adaptive mesh refinement was also made for the URANS and hybrid RANS/LES approaches. The results showed that the simple changes in the turbulent length scale or source term of turbulent models made the flow fields less dissipative and more realistic in hybrid RANS/LES methods than the URANS approaches.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

Large Eddy Simulation of Turbulent Combustion Flow Based on 2-scaler flamelet approach

  • Oshima, Nobuyuki;Tominaga, Takuji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.18-21
    • /
    • 2006
  • This paper investigates LES of turbulent combustion flow based on 2-scalar flamelet approach, where a G-equation and a conserved scalar equation simulate a propagation of premixed flame and a diffusion combustion process, respectively. The turbulent SGS modeling on these flamelet combustion approach is also researched. These LES models are applied to an industrial flows in a full scale gasturbine combustor with premixed and non-premixed flames. The numerical results predict the characteristics of experiment temperature profiles. Unsteady features of complex flames in combustor are also visualized.

  • PDF

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H. J.;Lee, S.;N. Fujisawa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.365.2-365
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The numerical simulation was carried out by LES. (omitted)

  • PDF

Numerical Simulation on Startup Transient Performance of a Centrifugal Pump

  • Chen, Gang;Shao, Jie;Wu, Yulin;Liu, Shuhong;Cao, Guangjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.751-755
    • /
    • 2008
  • During the rapid startup transient of a centrifugal pump, in order to investigate its transient characteristics, the torque equations are deduced. Based on these equations, numerical simulation is carried out with the Large Eddy Simulation(LES) method and UDFs(User Defined Functions) are applied during the simulation. Comparison between simulation and experiment results of pump heads and rotational speed shows that they are in good agreement, indicating that the dynamic characteristics of this pump can be predicted accurate comparatively through simulation with LES method during its startup process.

  • PDF

Large Eddy Simulation of Turbulent Flow around a Ship Model Using Message Passing Interface (병렬계산기법을 이용한 선체주위 점성유동장의 LES해석)

  • Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kang, Dae-Hwan;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.76-82
    • /
    • 2006
  • The large-eddy simulation(LES) technique, based an a message passing interface method(MPI), was applied to investigate the turbulent flaw phenomena around a ship. The Smagorinski model was used in the present LES simulation to simulate the turbulent flaw around a ship. The SPMD(sidsngle program multiple data) technique was used for parallelization of the program using MPI. All computations were performed an a 24-node PC cluster parallel machine, composed of 2.6 GHz CPU, which had been installed in the Advanced Ship Engineering Research Center(ASERC). Numerical simulations were performed for the Wigley hull, and the Series 60 hull(CB=0.6) using 1/4-, 1/2-, 1- and 2-million grid systems and the computational results had been compared to the experimental ones.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

Improved version of LeMoS hybrid model for ambiguous grid densities

  • Shevchuk, I.;Kornev, N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-281
    • /
    • 2018
  • Application of the LeMoS hybrid (LH) URANS/LES method for the wake parameters prediction is considered. The wake fraction coefficient is calculated for inland ship model M1926 under shallow water conditions and compared to results of PIV measurements. It was shown that due to lack of the resolved turbulence at the interface between LES and RANS zones the artificial grid induced separations can occur. In order to overcome this drawback, a shielding function is introduced into LH model. The new version of the model is compared to the original one, RANS $k-{\omega}$ SST and SST-IDDES models. It is demonstrated that the proposed modification is robust and capable of wake prediction with satisfactory accuracy.

Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow (Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사)

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.