Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2017.09.008

Improved version of LeMoS hybrid model for ambiguous grid densities  

Shevchuk, I. (Chair of Modeling and Simulation, University of Rostock)
Kornev, N. (Chair of Modeling and Simulation, University of Rostock)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.10, no.3, 2018 , pp. 270-281 More about this Journal
Abstract
Application of the LeMoS hybrid (LH) URANS/LES method for the wake parameters prediction is considered. The wake fraction coefficient is calculated for inland ship model M1926 under shallow water conditions and compared to results of PIV measurements. It was shown that due to lack of the resolved turbulence at the interface between LES and RANS zones the artificial grid induced separations can occur. In order to overcome this drawback, a shielding function is introduced into LH model. The new version of the model is compared to the original one, RANS $k-{\omega}$ SST and SST-IDDES models. It is demonstrated that the proposed modification is robust and capable of wake prediction with satisfactory accuracy.
Keywords
Hybrid RANS/LES; Shallow water; Wake prediction; Wake unsteadiness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Spalart, P., Allmaras, S., Jan. 1992. A one-equation turbulence model for aerodynamic flows. Aerospace Sciences Meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.1992-439.   DOI
2 Spalart, P., Jou, W., Strelets, M., Allmaras, S., 1997. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach. In: International Conference on DNS/LES, Aug. 4-8, 1997, Ruston, Louisiana.
3 Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A., 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3), 181-195. URL https:// doi.org/10.1007/s00162-006-0015-0.   DOI
4 Strelets, M., Jan. 2001. Detached eddy simulation of massively separated flows. Aerospace Sciences Meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.2001-879.   DOI
5 Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620-631. URL http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744.   DOI
6 Abbas, N., Kornev, N., 2016a. Study of unsteady loadings on the propeller under steady drift and yaw motion using URANS, hybrid (URANS-LES) and LES methods. Ship Technol. Res. Schiffstechnik 63 (2), 121-131.   DOI
7 Abbas, N., Kornev, N., 2016b. Validation of hybrid URANS/LES methods for determination of forces and wake parameters of KVLCC2 tanker at maneuvering conditions. Ship Technol. Res. Schiffstechnik 63 (2), 96-109.   DOI
8 Abbas, N., Kornev, N., Shevchuk, I., Anschau, P., 2015. CFD prediction of unsteady forces on marine propellers caused by the wake nonuniformity and nonstationarity. Ocean Eng. 659-672.
9 Adamian, D.Y., Travin, A.K., 2013. Assessment of an approach to generating inflow synthetic turbulence for large eddy simulations of complex turbulent flows. Prog. Flight Phys. 5, 43-54.
10 Bhushan, S., Walters, D.K., 2012. A dynamic hybrid Reynolds-averaged Navier StokeseLarge eddy simulation modeling framework. Phys. Fluids 24 (1). URL http://scitation.aip.org/content/aip/journal/pof2/24/1/ 10.1063/1.3676737.
11 Davidson, L., Billson, M., 2006. Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27 (6), 1028-1042. URL http://www.sciencedirect.com/science/ article/pii/S0142727X06000488.   DOI
12 Gritskevich, M., Garbaruk, A., Schutze, J., Menter, F., 2011. Development of DDES and IDDES formulations for the k-u shear stress transport model. Flow Turbul. Combust. 88 (3), 431-449. URL https://doi.org/10.1007/s10494-011-9378-4.   DOI
13 Demirdzic, I., 2015. On the discretization of the diffusion term in finite- volume continuum mechanics. Numer. Heat. Transf. Part B Fundam. 68.
14 Fr€ohlich, J., von Terzi, D., 2008. Hybrid LES/RANS methods for the simu- lation of turbulent flows. Prog. Aerosp. Sci. 44, 349-377.   DOI
15 Germano, M., 2004. Properties of the hybrid RANS/LES filter. Theor. Comput. Fluid Dyn. 17 (4), 225-231. URL https://doi.org/10.1007/s00162-004-0116-6.   DOI
16 Kniesner, B., Saric, S., Mehdizadeh, A., Jakirlic, S., Hanjalic, K., Tropea, C., Sternel, D.C., Gauss, F., Schafer, M., January 2007. Wall treatment in les by rans models: method development and application to aerodynamic flows and swirl combustors. ERCOFTAC Bull. 72 (1), 33-40. URL http://tubiblio.ulb.tu-darmstadt.de/29995/.
17 Kok, J., Dol, H., Oskam, B., van der Ven, H., Jan. 2004. Extra-large eddy simulation of massively separated flows. Aerospace sciences meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.2004-264.   DOI
18 Kornev, N., Abbas, N., 2017. Vorticity Structures and Turbulence in the Wake of Full Block Ships. Journal of Marine Science and Technology. https:// doi.org/10.1007/s00773-017-0493-3.   DOI
19 Lilly, D.K., 1992. A proposed modification of the Germano subgridescale closure method. Phys. Fluids A Fluid Dyn. (1989-1993) 4 (3), 633-635. URL http://scitation.aip.org/content/aip/journal/pofa/4/3/10.1063/1.858280.   DOI
20 Kornev, N., Taranov, A., Shchukin, E., Kleinsorge, L., 2011. Development of hybrid URANS-LES methods for flow simulation in the ship stern area. Ocean. Eng. 38, 1831-1838.   DOI
21 Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R., 2003. The innereouter layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24 (4), 538-550 selected Papers from the Fifth International Conference on Engineering Turbulence Modelling and Measurements. URL http://www.sciencedirect.com/science/article/pii/ S0142727X03000481.
22 List, S., Rugner, K., Friedhoff, B., 2015. WAKE. An veranderliche Wassertiefen angepasste Konzepte zur Energiesparung durch Vergleichmassigung des Propellerzustroms. Bericht 2162.
23 Menter, F., Ferreira, J.C., Esch, T., Konno, B., 2003a. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the International Gas Turbine Congress, pp. 2-7.
24 Menter, F.R., Kuntz, M., Langtry, R., 2003b. Ten years of industrial experience with the SST turbulence model. In: Hanjalic, K., Nagano, Y., Tummers, M. (Eds.), Turbulence, Heat and Mass Transfer 4. Begell House, Inc.
25 Rajamani, B., Kim, J., 2010. A hybrid-filter approach to turbulence simulation. Flow Turbul. Combust. 85 (3), 421-441. URL https://doi.org/10.1007/s10494-010-9254-7.   DOI
26 Sagaut, P., Deck, S., Terracol, M., 2013. Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods : Applications and Guidelines. Imperial College Press. URL http://books.google.de/books?id=FUB7MAEACAAJ.
27 Schlichting, H., 2000. Boundary Layer Theory. Springer.
28 Sanchez-Rocha, M., Menon, S., 2011. An order-of-magnitude approximation for the hybrid terms in the compressible hybrid RANS/LES governing equations. J. Turbul. 12, N16. URL https://doi.org/10.1080/14685248. 2011.560153.   DOI