• Title/Summary/Keyword: LEOP

Search Result 33, Processing Time 0.022 seconds

Orbit Analysis for KOMPSAT-2 During LEOP and Mission Lifetime (아리랑위성 2호 초기운용 및 임무기간 중 궤도 분석)

  • Kim, Hae-Dong;Jung, Ok-Chul;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.914-924
    • /
    • 2010
  • In this paper, results on the orbit analysis for the KOMPSAT-2 satellite using a real orbit data during the LEOP and normal mission lifetime are presented. In particular, the preparation and performance of an orbit operations during the LEOP is emphasized and the effects of space environments (i.e., Solar activity) on orbit evolutions are investigated comparing to those of the KOMPSAT-1 satellite. The summarized results in this paper would be an important reference to improve the stability and effectiveness of satellite operations during the LEOP and normal mission lifetime in case of LEO satellites such as successors of KOMPSAT-2 (i.e., KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5).

Ranging Data Accuracy in K13 S-Band Antenna

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.464-466
    • /
    • 2004
  • Ranging and 2-way Doppler measurements are very essential source for orbit determination in LEOP (Launch and Early Operation). This paper shows ranging system features of 13M TT &C antenna and test results recently acquired with KOMPSAT-l. Ranging and 2-way Doppler measurements were compared with KOMPSAT-I GPS telemetry data. Through comparison, it was found that constant and accurate ranging measurements are available with 13M antenna system. Ranging and Doppler measurement function is expected to be used for KOMPSAT-1 and KOMPSAT-2.

  • PDF

5ft S-Band TT&C Antenna Test

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • In early 2004, KARI developed 5ft S-Band TT&C antenna for especially KOMPSAT-2 operation in LEOP phase. This paper shows system features of 5ft S-Band antenna and its test result with KOMPSAT-l. Tracking test, command uplink test and telemetry downlink test were performed. Through tests, 5ft antenna was verified to be operational in uplink and downlink with KOMPSAT series. Due to its inherent wide 3dB beam-width of about 7deg at S-Band, this antenna system can be used very effectively even though orbital information is less accurate like LEOP and spacecraft safe mode.

  • PDF

POST LAUNCH MISSION ANALYSIS FOR THE KOMPSAT-1

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jong-Ah
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.285-294
    • /
    • 2000
  • The post-launch mission analysis of the KOMPSAT-1 spacecraft was carried out. The injection accuracy of the Taurus launch vehicle was analyzed by comparison of the target and the realized orbit parameters. The tracking station contact analysis was also performed based on the state vectors applied at the day of launch. The offset angles between the predicted orbit and realized orbit were calculated for various tracking stations. The injection orbit parameters of the KOMPSAT-1 were analyzed for the possible options in Launch and Early Orbit Phase(LEOP) operations. Variations of the Local Time of Ascending Node(LTAN) were also obtained.

  • PDF

다목적 위성 2호 MSC 영상 자료를 위한 검보정 target 준비

  • 이동한;송정헌;김용승
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.255-259
    • /
    • 2004
  • 본 논문에서는 다목적 위성 2호의 주 탑재체인 MSC (Multi-Spectral Camera)의 영상자료 검보정을 위한 검보정 target 준비 작업에 대해 설명한다. MSC 영상 자료에 대한 검보정 작업은 다목적 위성 2호의 발사 후 초기 운영 기간 (LEOP: Launch and Early Operation Phase)인 3개월 동안 수행될 예정이다. 위성 발사 전까지 MSC 영상 자료에 대한 검보정을 수행하기 위해 필요한 준비 작업들이 현재 한국항공우주연구원에서 진행중이다. LEOP 기간 동안 MSC 영상 자료를 검보정하기 위해서, MSC의 센서 특성에 따라 7가지 정도의 검보정 target에 대한 설계 초안이 완성되었으며, 향후 target에 대한 설계를 완성한 후에 2004년 중에 한 두 부지에 몇 가지 target들을 건설하고, 다목적 위성 2호의 궤도 특성을 고려하여 일부 target은 운반이 가능하도록 제작할 예정이다. 검보정 target이 촬영된 MSC 영상 자료의 분석을 통해, GSD (Ground Sample Distance), Aliasing, Linearity, Edge Slope & Response, MTF (Modulation Transfer Function), FOV & IFOV, Absolute radiometric validation, Position Accuracy 등의 MSC 검보정 요소 값들을 측정할 계획이다.

  • PDF

A Study on the Performance of COMS CPS during LEOP (천리안 위성의 LEOP기간 동안의 추진계 성능 연구)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.258-263
    • /
    • 2012
  • In this paper the Chemical Propulsion Subsystem of COMS is briefly explained and some telemetries acquired by a series operations of CPS during the Launch and Early Operation Phase of COMS are presented. The pressure and temperature of pressurant tank telemetries are compared with the results of the developed computer program. The changes in pressure are due to the two major phases. The first one is the initialization phases of CPS composed of the venting phase to vent the helium gas in the pipe network from the downstream of the propellant tanks to the thrusters for safety, the priming phase to fill the vented pipe network with oxidizer and fuel respectively and then the pressurization phase to pressurize the ullage of propellant tank to regulated pressure. And the other is the apogee engine firings in which COMS CPS is in the orbit raising phase to use helium as a pressurant to keep the pressure of propellant tank as the liquid apogee engine get fired until COMS reached to the target orbit. This program can be applicable to prepare basis design data of the next Geostationary Satellite CPS.

Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase (정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성)

  • Seo, DooChun;Kim, Hyun-Ho;Jung, JaeHun;Lee, DongHan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1493-1507
    • /
    • 2020
  • The LEOP Cal/Val (Launch and Early Operation Phase Calibration/Validation) was carried out during 6 months after KOMPSAT-3A (KOMPSAT-3A Korea Multi-Purpose Satellite-3A) was launched in March 2015. After LEOP Cal/Val was successfully completed, high resolution KOMPSAT-3A has been successfully distributing to users over the past 8 years. The sub-meter high-resolution satellite image data obtained from KOMPSAT-3A is used as basic data for qualitative and quantitative information extraction in various fields such as mapping, GIS (Geographic Information System), and national land management, etc. The KARI (Korea Aerospace Research Institute) periodically checks and manages the quality of KOMPSAT-3A's product and the characteristics of satellite hardware to ensure the accuracy and reliability of information extracted from satellite data of KOMPSAT-3A. To minimize the deterioration of image quality due to aging of satellite hardware, payload and attitude sensors of KOMPSAT-3A, continuous improvement of image quality has been carried out. In this paper, the Cal/Val work-flow defined in the KOMPSAT-3A development phase was illustrated for the period of before and after the launch. The MTF, SNR, and location accuracy are the key parameters to estimate image quality and the methods of the measurements of each parameter are also described in this work. On the basis of defined quality parameters, the performance was evaluated and measured during the period of after LEOP Cal/Val. The current status and characteristics of MTF, SNR, and location accuracy of KOMPSAT-3A from 2016 to May 2020 were described as well.

Geostationary Satellite Launch and Early Operations (정지궤도위성 발사 및 발사후 초기운용)

  • Han, Cho-Young;Chae, Jong-Won;Kim, Su-Kyum;Won, Su-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.66-68
    • /
    • 2011
  • Chollian is a geostationary satellite, and its bipropellant propulsion system is mainly composed of one main engine for orbit transfer and fourteen thrusters for on-station operations. The Chollian was launched successfully at Kourou Space Center in French Guiana. After it separated from the launcher, the propulsion system was initialised automatically. Then three times of main engine firing were successfully performed, and the target obit insertion was accomplished. This paper details the major CPS events during LEOP phase for the Chollian satellite.

  • PDF

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF