• Title/Summary/Keyword: LENGTH FREQUENCY

Search Result 3,083, Processing Time 0.035 seconds

Computation of Critical Length for Linear Grounding Electrodes (직선형 접지전극의 임계길이의 산정)

  • Kim, Ki-Bok;Lee, Bok-Hee;Joe, Jeong-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.67-74
    • /
    • 2009
  • For the surge currents like lightning currents containing high frequency components and the abnormal currents having high frequencies which cause the EMI(Electromagnetic interference) problems for the electronic devices and communication instruments, the linear grounding electrodes have the significantly composite impedance characteristics which are dependent on the frequency of the applied current. The impedance of a grounding electrode is not lowered by expanding the dimension of the grounding electrode, and the length of grounding electrode having the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical length. In this paper, the critical lengths for the vertically and horizontally-buried grounding electrodes are calculated by using the distributed parameter circuit model. The propriety of the simulations has been confirmed by comparing the simulated results with the measured results.

Single-Carrier with Frequency-Domain Equalization with Variable-length Guard Intervals (가변 길이의 보호구간을 가지는 주파수 영역 등화 사용 단일 반송파 시스템)

  • Rim Minjoong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.4 s.334
    • /
    • pp.21-28
    • /
    • 2005
  • SC-FDE (Single Carrier with Frequency-Domain Equalization), one of physical layers of IEEE802.16, is less sensitive to nonlinear power amplifiers than OFDM while its complexity and performance is comparable. The guard interval length in SC-FDE should be greater than the maximal delay spread. While a delay spread is small in most wireless communication environments, a very large delay spread can be possibly encountered in the mountain areas or due to the repeaters. This paper proposes SC-FDE with variable-length guard intervals. In the proposed method the guard interval length can be determined per each cell or per each subscriber stations.

Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Khan, Muhammad Shabaz;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.411-425
    • /
    • 2020
  • In this paper, the shell material has been taken as functionally graded material and their material quantity is located by the exponential volume fraction law. Moreover, the impact of ring supports around the shell circumference has been examined for their various positions along the shell axial length. These rings support restraints the radial displacement in the transverse direction. While the axial modal deformation functions have been estimated by characteristic beam functions and nature of materials used for construction of cylindrical shells. The fundamental natural frequency of cylindrical shell of parameter versus ratios of length- and height-to-radius for a wide range has been reported and investigated through the study. In addition, by increasing height-to-radius ratio resulting frequencies also increase and frequencies decrease on ratio of length-to-radius. Though the trends of frequency values of both ratios are converse to each other with three different boundary conditions. Also it is examined the position of ring supports with length-to radius ratio, height-to-radius ratio and varying the exponent of volume fraction. MATLAB software package has been utilized for extracting shell frequency spectra. The obtained results are confirmed by comparing with available literature.

Vibration Characteristics and Analysis of the Critical Crack Length for a Fracture in the Last Stage Blade of a Low Pressure Steam Turbine (균열을 내재한 저압터빈 최종단 블레이드의 진동 특성 및 파괴 임계균열길이 해석)

  • Youn, Hee-Chul;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.386-392
    • /
    • 2016
  • The sizes of last stage blades (LSB) in a low-pressure steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than other blades in the same system. As a result, crack propagation in an LSB is caused by the large centrifugal force, low natural frequency, and repeated turbine startups. In this study, the critical crack length for a fracture and vibration characteristics, in accordance with crack propagation, were analyzed using a finite element method to calculate the stress intensity factor (SIF) and the natural frequency that was affected by the stress-stiffening effect. It was calculated that the frequency of the third and fifth modes passed the excited harmonic resonance (5X and 10X) and the observed calculated critical crack length matched that of the real fractured surface.

Active cancellation of phase noise induced by an optical fiber for delivery of optical frequency standard (광섬유를 통한 광 주파수 전송에서 광 위상 잡음의 능동 제거)

  • Lee, Won-Kyu;Kim, Jae-Wan;Ryu, Han-Young;Kim, Eok-Bong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • We have transferred a narrow-linewidth $1.5{\mu}m$ laser beam through a 525 m fiber network with excellent transfer stability. The fiber-induced optical phase noise during the fiber transmission is cancelled by configuring a noise-canceling servo. The transfer instability was $2{\times}10^{-17}$ at 1 s of averaging time. We quantitatively analyzed the transferred optical frequency in the frequency domain and in the time domain.

VCO Oscillation Characteristics by Varying the Length of the MSL of LC Resonator (LC공진기의 MSL길이에 따른 VCO 발진 특성)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.412-418
    • /
    • 2002
  • In this paper, the authors present the simulation results and the experimental considerations on the effects of the effects of the VCO oscillation characteristics caused by varying the length of the MSL and the composition capacitance of LC resonation circuity. Simulation was accomplished by nonlinear RF circuit simulator for designing and analyzing the RF characteristis of VCO. The samples with 3 different MSL lengths of which the length is 140mil, 280mil and 560mil respectively were fabricated by screen printing process. The oscillation frequency of each sample(VCO) was tuned to UHF band (750MHz~900MHz) by varying the capacitance of LC resonator circuit. The experimental results showed that the values of phase noise were -82, -93, -97[dBc/Hz] at 50[kHz] offset frequency, the pushing figures were 114, 94, 318[kHz] at applied voltage of $3\pm0.15$[V] and the harmonics were -21, -16, -13[dBc] for MSL lengths of 140mil 280mil, 560mil respectively. The frequency and output variation width were 779~898[MHz], -36~-33[dBm] for MSL with 140mil length; 818~836[MHz], -27.19~27.06[dBm] for 280mil; 751.54~751.198[MHz], -33.44~-33.31[dBm] for 560mil.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

An Experimental Study on the 1st Harmonic Characteristic for open-tube-type and close-tube-type Thermoacoustic Refrigerators (개방관형과 밀폐관형 열음향 냉동기의 1차 하모닉에 관한 특성 연구)

  • 송규조;박종호;고득용;박성제;김효봉;정철진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.189-192
    • /
    • 2002
  • In this study, The experimental open-tube-type and close-tube-type thermoacoustic refrigerator were constructed. The resonant characteristics of a thermoacoustic refrigerator were investigated. In order to determine the optimum resonant tube length and frequency, We changed the length of resonant tube from 400mm to 850mm and the frequency from 100Hz to 1000Hz. In case of first harmonic, the temperature difference of open-tube-type (1/4 wave) refrigerator was $41^{\circ}C$(resonator length :500mm). The temperature difference of close-tube-type (1/2 wave) refrigerator was $43^{\circ}C$(resonator length :850mm). In this experiments, the experimental 1/2 wave refrigerator is slightly cooler than the experimental l/4 wave refrigerator.

  • PDF

Design and fabrication of unimorph type piezoelectric vibrator (단층형 압전진동자의 설계 및 제작)

  • Jun, Ho-Ik;Kim, Jeong-Hwan;Ji, Seung-Hoon;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1317-1318
    • /
    • 2007
  • On this paper, unimorph type piezoelectric vibrator made by attaching ceramic plates on rectangular elastic body, to find the basic characteristic of the actuators. In experiment, elastic body's displacement and resonance frequency were measured according to changes of ceramic's length and elastic body's length. Also, temperature changes were observed according to time. The displacement and resonance frequency were increased when the ceramic's length were increased. When elastic body's length was increased, the displacement was increased. Also, the temperature was increased according to time, but at some time it was saturated and the temperature was not increased any more.

  • PDF

Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory

  • Balci, Mehmet N.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This article investigates the longitudinal vibration of a nanorod embedded in viscoelastic medium according to the nonlocal strain gradient theory. Viscoelastic medium is considered based on Kelvin-Voigt model. Governing partial differential equation is derived based on longitudinal equilibrium and analytical solution is obtained by adopting harmonic motion solution for the nanorod. Modal frequencies and corresponding damping ratios are presented to demonstrate the influences of nonlocal parameter, material length scale, elastic and damping parameters of the viscoelastic medium. It is observed that material length scale parameter is very influential on modal frequencies especially at lower values of nonlocal parameter whereas increase in length scale parameter has less effect at higher values of nonlocal parameter when the medium is purely elastic. Elastic stiffness and damping coefficient of the medium have considerable impacts on modal frequencies and damping ratios, and the highest impact of these parameters on frequency and damping ratio is seen in the first mode. Results calculated based on strain gradient theory are quite different from those calculated based on classical elasticity theory. Hence, nonlocal strain gradient theory including length scale parameter can be used to get more accurate estimations of frequency response of nanorods embedded in viscoelastic medium.