• Title/Summary/Keyword: LEGO-NXT

Search Result 33, Processing Time 0.025 seconds

A Learning Method of Stack and Queue through Solving Maze Exploration Problems with Robots (로봇의 미로 탐색 문제해결을 통한 스택과 큐 학습 방안)

  • Hong, Ki-Cheon
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.613-618
    • /
    • 2012
  • ICT education guidelines revised in 2005 reinforce computer science elements such as algorithm, data structure, and programming covering all schools. And Ministry of Education emphasizes STEAM education. Most important is that "How instruct them". This means necessity of contents. So this paper suggests learning method of Stack and Queue using LEGO MINDSTORMS NXT. The main purpose is that how stack and queue are used, when robot explore realistic maze. Teaching and learning strategies are algorithm, flowchart, and NXT-G programming. Simple maze has path in left or right, but complex maze has three-way intersection. These are developed by authors. Master robot explores maze and push stack, and then return to entrance using stack. Master robot explores maze and transmits path to slave's queue. And then slave robot drives without exploration. Students can naturally learn principles and applications of them. Through these studies, it can improves ability of logical and creative thinking. Furthermore it can apply to ICT and STEAM education.

Design and Implementation of a Virtual Robot Education System (가상 로봇 교육 시스템 설계 및 구현)

  • Hongyu, Xiong;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.108-115
    • /
    • 2011
  • Virtual Robot Education System (VRES), which is for programming education with a Lego Mindstorm NXT robot, is designed and implemented. Through this system, program learners can edit source code, compile, download it into the robot, and run their executive program. In order to observe it, the system includes web cameras and provide monitoring services. Thus, students are able to verify the operation of robot into which they download their program in detail and to debug if necessary. In addition, we design a new simple user-friendly programming language and a corresponding compiler for it. With those tools, learner can more easily create programs for NXT robot and test them than Java language. A educator can control and manage the robot for the subject of a class with direct control mode of our system. Therefore, the proposed system is able to support students to learn robot programming during or after regular classes with web browsers through Internet.

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Development and Evaluation of a Putting Training System with Changeable Guideline of Width and Distance (가이드 폭과 위치조절이 가능한 퍼팅훈련시스템 개발 및 유용성 평가)

  • Kil, S.K.;Kim, J.H.;Moon, J.H.;Park, J.C.;Kim, T.W.;Kim, K.J.;Lee, S.C.;Hwang, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • The purpose of this study was development and evaluation of putting training system with specialized guides which were adjustable its width and changeable its distance from the ball. The system hardwares that used in this study were made by LEGO NXT and Tetrix set. The system software was made by LabVIEW ver. 2010. The subjects were organized in non-experts(10persons) and KPGA(5persons) players. The putting training schedule was composed of 10 sets and each sets were identically same, which were organized in 4 different width of its guide at 3 different distance from the ball hitting spot, 3 repetition each. The speed/acceleration in wrist area and movement in head area were both reduced by the putting training. Most of testees submitted positive comments in aspect of concentration and motivation. This training method which had changeable width and distance will be able to adapt easily to another sports for the handicapped and the elderly such as ParkGolf or Gateball.

  • PDF

Development and Application of Robot Curriculum Based Education in Insects Robot (곤충형 로봇 제작에 기반한 로봇 교육과정 개발 및 적용)

  • Moon, Wae-Shik;Yoo, Seoung-Han
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • Robot Curriculum based education in Insects Robot help elementary school students better understand how a robot works. This robot curriculum is aimed at elementary school students in fifth grade. This study progressed with LEGO(R) MINDSTORMS(R) NXT, departed 6 groups, reached the insect's movement, designed robot like insects. This curriculum enhanced discussion prowess and improved the ability of building robot. During this study, most of the students were attracted to the action of the robot-like insect's movement.

  • PDF

A Design of Robot-based Loaming Program for Programming Education (프로그래밍 교육을 위한 로봇 기반의 학습 프로그램 설계)

  • Jin, Sung-Su;Park, Phan-Woo
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.192-194
    • /
    • 2007
  • 프로그래밍 교육은 학생들이 컴퓨터를 주체적이고 능동적으로 활용할 수 있도록 해주며, 창의적 사고력, 수학적 능력 함양등 교육적으로 많은 잠재 가치를 가지고 있다. 그러나 프로그래밍 언어를 학습하기가 쉽지 않고 많은 시간을 필요로 하여 학교 교육에서 소외받고 있는 현실이다. 따라서 본 논문은 개정된 초 중등학교 정보통신기술교육 운영지침의 3, 4단계에서 프로그래밍에 관련된 학습 목표를 추출하여 초등학생에게 적용할 수 있는 학습 내용을 단계적으로 구성하였고, 교육용 로봇인 LEGO MINDSTORMS NXT를 사용하여 학습할 수 있도록 프로그램을 설계하였다.

  • PDF

Location Estimation and Navigation of Mobile Robots using Wireless Sensor Network and Ultrasonic Sensors (무선 센서 네트워크와 초음파 센서를 이용한 이동로봇의 위치 인식과 주행)

  • Chun, Chang-Hee;Park, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1692-1698
    • /
    • 2010
  • In this paper we use wireless sensor network and ultrasonic sensors to estimate local position of mobile robots, and to navigate it. Ultra sonic sensor is simple and accurate so it is good to use in local estimation and navigation of mobile robots. But to obtain accurate distance of two sensors they need to face each others as possible as they can. To solve this problem we rotate ultra sonic sensor which is attached to robot in 360 degrees and obtain accurate distance. We can estimate precise position of mobile robot by triangulation using obtained distance information. A mobile robot navigates using embedded encoder and compensates its coordinates by ultrasonic sensors. Results of Experiments show proposed method obtains accurate distance between sensors and coordinates of position of robot. And mobile robots can navigate designated path well.

An Implementation of A Multi-Robot System Using Educational Mini-Robots (교육용 소형 로봇을 이용한 군집로봇 시스템 구현)

  • Yoo, Young-Dae;Jang, Seon-Ah;Yang, Jae-Gun;Park, Ji-Hyun;Bae, Jae-Hak J.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.387-390
    • /
    • 2008
  • 본 논문에서는 교구용 소형 로봇으로 구현한 군집로봇 시스템을 소개한다. 각 로봇에 내장된 블루투스 무선통신으로 군집로봇 네트워크를 구성하였다. 실험에 사용한 로봇은 $LEGO^{(R)}$ $MINDSTORMS^{(R)}$ NXT이다. 여러 로봇이 라인으로 표현한 대형 미로를 동시에 탐사하는 환경을 가정하였다. 이런 상황에서 각 로봇은 주어진 임무를 수행하면서 센서로 주변 환경 정보를 측정해서 대표 로봇에게 보낸다. 여기에 필요한 메시지 구조를 군집로봇에 적절하도록 설계하였다. 이렇게 군집로봇을 구현하고 실험한 결과, 그룹 대표로봇이 통신을 중계하는 방법으로 통신거리 제약을 해소할 수 있었다.

  • PDF

Development of a Code Generation Support System in Integrated Development Environment of an Educational Compiler

  • Kwon, Jung-Hoon;Bae, Jong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.159-166
    • /
    • 2016
  • Compiler course is one of the important courses in computer science. It requires more efficient learning environment because of its large coverage scale and complexity. One of its solutions is to provide the integrated development environment for educational compilers which is enable to give practice-oriented class and enhance student's interest. This paper presents the code generation support system developed in an integrated development environment of educational compiler. Our system helps students to understand the process of code generation and visualizes the relation among the source language, AST, and the target language. It makes students develop their own compilers more easily.

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.