• Title/Summary/Keyword: LED light curing units

Search Result 30, Processing Time 0.026 seconds

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Relationship between battery level and irradiance of light-curing units and their effects on the hardness of a bulk-fill composite resin

  • Fernanda Harumi Oku Prochnow ;Patricia Valeria Manozzo Kunz;Gisele Maria Correr;Marina da Rosa Kaizer;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2022
  • Objectives: This study evaluated the relationship between the battery charge level and irradiance of light-emitting diode (LED) light-curing units (LCUs) and how these variables influence the Vickers hardness number (VHN) of a bulk-fill resin. Materials and Methods: Four LCUs were evaluated: Radii Plus (SDI), Radii-cal (SDI), Elipar Deep Cure (Filtek Bulk Fill, 3M Oral Care), and Poly Wireless (Kavo Kerr). Irradiance was measured using a radiometer every ten 20-second activations until the battery was discharged. Disks (4 mm thick) of a bulk-fill resin (Filtek Bulk Fill, 3M Oral Care) were prepared, and the VHN was determined on the top and bottom surfaces when light-cured with the LCUs with battery levels at 100%, 50% and 10%. Data were analyzed by 2-way analysis of variance, the Tukey's test, and Pearson correlations (α = 5%). Results: Elipar Deep Cure and Poly Wireless showed significant differences between the irradiance when the battery was fully charged versus discharged (10% battery level). Significant differences in irradiance were detected among all LCUs, within each battery condition tested. Hardness ratios below 80% were obtained for Radii-cal (10% battery level) and for Poly Wireless (50% and 10% battery levels). The battery level showed moderate and strong, but non-significant, positive correlations with the VHN and irradiance. Conclusions: Although the irradiance was different among LCUs, it decreased in half of the devices along with a reduction in battery level. In addition, the composite resin effectiveness of curing, measured by the hardness ratio, was reduced when the LCUs' battery was discharged.

Power density of light curing units through resin inlays fabricated with direct and indirect composites (직접수복용 레진과 기공용 레진으로 제작한 레진 인레이를 투과한 광중합기의 광강도)

  • Chang, Hoon-Sang;Lim, Young-Jun;Kim, Jeong-Mi;Hong, Sung-Ok
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.353-358
    • /
    • 2010
  • Objectives: The purpose of this study was to measure the power density of light curing units transmitted through resin inlays fabricated with direct composite (Filtek Z350, Filtek Supreme XT) and indirect composite (Sinfony). Materials and Methods: A3 shade of Z350, A3B and A3E shades of Supreme XT, and A3, E3, and T1 shades of Sinfony were used to fabricate the resin inlays in 1.5 mm thickness. The power density of a halogen light curing unit (Optilux 360) and an LED light curing unit (Elipar S10) through the fabricated resin inlays was measured with a hand held dental radiometer (Cure Rite). To investigate the effect of each composite layer consisting the resin inlays on light transmission, resin specimens of each shade were fabricated in 0.5 mm thickness and power density was measured through the resin specimens. Results: The power density through the resin inlays was lowest with the Z350 A3, followed by Supreme XT A3B and A3E. The power density was highest with Sinfony A3, E3, and T1 (p < 0.05). The power density through 0.5 mm thick resin specimens was lowest with dentin shades, Sinfony A3, Z350 A3, Supreme XT A3B, followed by enamel shades, Supreme XT A3E and Sinfony E3. The power density was highest with translucent shade, Sinfony T1 (p < 0.05). Conclusions: Using indirect lab composites with dentin, enamel, and translucent shades rather than direct composites with one or two shades could be advantageous in transmitting curing lights through resin inlays.

THE EFFECTS OF VARIOUS CURING LIGHT SOURCES ON THE MICROHARDNESS OF LIGHT-ACTIVATED RESTORATIVE MATERIALS (다양한 광원에 의한 광중합형 수복물질의 미세경도에 관한 연구)

  • Choi, Nam-Ki;Yang, Kyu-HO;Kim, Seon-Mi;Choi, Choong-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.634-643
    • /
    • 2005
  • The aim of this study is to evaluate the effects of blue light emitting diode (LED) Light Curing Units (FreeLight 2, L.E.Demetron I, Ultra-Lume 5) on the microhardness of three resin composites (Z250, Point 4, Dyract AP) and to determine their optimal curing time. Samples were made using acrylic molds $(2.0mm{\times}3mm)$ of each composite. All samples were prepared over a Mylar strip placed on a flat glass surface. After composite placement on the molds, the top surface was covered with another Mylar strip and a glass slab was gently pressed over it. The times of irradiation were as follows: Elipar TriLight, 40 s; Elipar FreeLight 2. L.E.Demetron I, and Ultra-Lume 5, 10s, 20s, 40s, respectively. Mean hardness values were calculated at the top and bottom for each group. ANOVA and Sheffe's test were used to evaluate the statistical significance of the results. Results showed that FreeLight 2, Ultra-Lume 5, and L.E.Demetron I were able to polymerize point 4 in 20 seconds to a degree equal to that of the halogen control at 40 seconds. FreeLight 2 and L.E.Demetron I were able to polymerize Z250 in 10 seconds to a degree equal to that of the halogen control at 20 seconds. FreeLight 2 and L.E.Demetron I were able to polymerize Dyract AP in 10 seconds to a degree equal to that of the halogen control at 40 seconds. The commercially available LED curing lights used in this study showed an adequate microhardness with less than half of the exposure time of a halogen curing unit.

  • PDF

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

EFFECT OF VARIOUS LINERS ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (수종의 이장재가 복합레진의 중합수축에 미치는 영향)

  • Choi, Ji-Won;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.606-614
    • /
    • 2006
  • The purpose of this study was to evaluate the polymerization contraction of composite resin(Tetric $ceram^{(R)}$, Ivoclar Vivadent Liechtenstein) according to various liners(Tetric $flow^{(R)}$, Ivoclar Vivadent, Liechtenstein/$Ionosit^{(R)}$, DMG, German/ $Vitrebond,^{TM}$ 3M-ESPE, USA). The strain gauge method was used for measurement of polymerization shrinkage strain. Specimens were divided by 8 groups according to curing units and liners. Group A, E: Tetric $ceram^{(R)}$ bulk filing, Group B, F: Tetric $flow^{(R)}$ lining, Tetric $ceram^{(R)}$ filling, Group C, G: $Ionosit^{(R)}$ lining, Tetric $ceram^{(R)}$ filling, Group D, H: $Vitrebond^{TM}$ lining, Tetric $ceram^{(R)}$ filling. Group A, B, C and D were cured using the conventional halogen light($XL3000^{TM}$ 3M ESPE, USA) for 40 seconds at $400mW/cm^2$. Group E, F G and H were cured using light emitted diode(LED) light(Elipar Freelight $2^{TM}$, 3M-ESPE, USA) for 15 seconds at 800 $mW/cm^2$. Strain gauge attached to each sample was connected to a strainmeter. Measurements were recorded at each second for the total of 750 seconds including the periods of light application. Obtained data were analyzed statistically using Repeated measures ANOVA and Tukey test. The results of this were as follows : 1. Contraction stresses in flowable resin and glass ionomer lining group were lower than that in compomer lining group(p<0.05). 2, Contraction stresses in LED curing light groups were higher than that in halogen curing light groups, but there was no significant difference (p>0.05).

  • PDF

MICROTENSILE BOND STRENGTH ACCORDING TO DIFFERENT DENTIN WALL POSITIONS AND CURING LIGHTS IN CLASS I CAVITY OF PRIMARY MOLAR (유구치 I급 와동에서 와동벽 위치와 중합광원에 따른 Microtensile Bond Strength 비교 연구)

  • Lee, Hyeon-Heon;Jang, Chul-Ho;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.62-72
    • /
    • 2007
  • The purpose of present study was to determine whether different kinds of curing lights can alter microtensile bond strength(MTBS) of class I cavity pulpal and axial wall specimens in primary molar. Thirty clean mandibular 2nd primary molar's occlusal enamel were removed and class I cavity, size of $2{\times}4{\times}2mm$ was prepared. Dentin bonding agent was applied according to manufacturer's manual. Each group was cured with Halogen Curing Unit, Plasma Curing Unit and LED Curing Unit. Composite resin was bulk filled and photo cured with same curing unit. MTBS specimens which size is $0.7{\times}0.7{\times}4mm$ were prepared with low speed saw. Specimens were coded by their curing lights and wall positions (Halogen - Axial wall group, Halogen - Pulpal wall group, Plasma - Axial wall group, Plasma - Pulpal wall group, LED - Axial wall group, LED - Pulpal walt group). MTBS were tested at 1 mm/min cross Head speed by Universal Testing Machine. Fractured surface and bonding surface was observed with SEM. T-test between axial and pulpal specimens in each curing lights, one-way ANOVA among different curing light specimens in each wall positions were done. Weibull distribution analysis was done. The results were as follows : Mean MTBS of pulpal wall specimens were significantly greater than that of axial wall specimens at each curing units(p<.05). There was no significant difference in the MTBS among three curing units at axial wall and pulpal wall. In Weibull distribution, pulpal wall specimens were more homogeneous than axial wall specimens.

  • PDF

The effects of blocking the oxygen in the air during the polymerization of sealant (광중합 시 공기 중 산소의 차단이 치면열구전색제의 중합에 미치는 영향)

  • Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • The purpose of this study was to evaluate the efficacy of blocking the oxygen in the air during the polymerization of sealant. All curing were performed with various light curing units under the application of oxygen gel barrier, stream of nitrogen and carbon dioxide gas for inhibition of oxygen diffusion into sealant surface. The results of present study can be summarized as follows : 1. The amount of eluted TEGDMA form the specimens cured with all the three different light units in the stream of $N_2$ and $CO_2$ gas and application of Oxygen gel barrier($DeOx^{(R)}$) were significantly lower than in the room-air atmosphere (Control) (p<0.05). 2. In the $DeOx^{(R)}$ application, the amount of eluted TEGDMA the specimen cured with PAC light for 10seconds was less than that cured in the stream of $N_2$ and $CO_2$ atmospheric conditions (p<0.05) 3. In the LED using 10 or 20sec irradiation times under the stream of $N_2$ and $CO_2$, the eluted TEGDMA showed to be no statistically significant difference (p>0.05). 4. The microhardness from the specimens cured with all the three different light units under each treated conditions were significantly higher than in the room-air atmosphere (p<0.05). 5. The surface treatment by $DeOx^{(R)}$, $N_2$ and $CO_2$ reduces the thickness of oxygen inhibited layer by sp proximately 49% of the untreated control value.

  • PDF

Recovery of Streptococcus Mutans Biofilm after Photodynamic Therapy with Erythrosine and LED Light Source (Erythrosine과 LED를 이용한 광역동 치료 후 Streptococcus mutans 바이오필름의 회복)

  • Yongwook, Shin;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.149-157
    • /
    • 2022
  • The aim of this study was to evaluate the effects of erythrosine-mediated photodynamic therapy (PDT) on Streptococcus mutans biofilm recovery by counting its colony-forming units (CFUs) and via confocal laser scanning microscopy analysis at different time points following PDT. In PDT, photosensitizer was an erythrosine. S. mutans ATCC25175 biofilms were irradiated using an LED curing light. Chlorhexidine (CHX) was used as positive control. After each antimicrobial treatment, samples were cultured to allow biofilm recovery. Viability was measured by calculating the CFU counts after treatment and after every 3 hours for up to 24 hours. Immediately after treatment, the PDT and CHX groups showed equally significant decreases in S. mutans CFU counts compared to the negative control. After 12 hours of reculture, the PDT group showed no significant difference in the decrease in CFU count compared to the negative control, whereas the CHX group showed significantly lower CFU counts throughout the 24-hour period. Erythrosine-mediated PDT can effectively inhibit S. mutans biofilm formation. However, biofilm recovery occurred earlier in the CHX group after PDT. This study provides insights into the clinical effectiveness of PDT in preventing dental caries.

THE TEMPERATURE RISING IN PULP CHAMBER DURING COMPOSITE RESIN POLYMERIZATION (광중합 기전에 따른 복합레진 중합 시 치수강 내 온도변화)

  • Hwang, Dong-Hwan;Lee, Ju-Hyun;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.431-438
    • /
    • 2003
  • This study investigates pulp chamber temperature rise during composite resin polymerization by plasma arc(Group III : Flipo 3 sec, Group IV : Flipo 5 sec) and LED curing units(Group V : Lux-O-Max, 40 sec) as well as conventional halogen lamp curing units(Group I : VIP mode3, 20 sec, Group II : VIP mode6, 20 sec). The results are as follows : 1. All of the investigated pulp chamber temperature rises are lower than the boundary temperature could result in irreversible damage to the pulpal tissue ($5.5^{\circ}C$). 2. In the group II, it is found the significantly higher pulp chamber temperature rise than any other groups(p<0.05). 3. In the group of composite resin light-cured with VIP, it is found the significantly higher pulp chamber temperature rise in the group II than group I(p<0.05). 4. In the group of composite resin light-cured with Flipo, it is found the significantly higher pulp chamber temperature rise in the group IV than group III (p<0.05). 5. In the case of comparing VIP and Flipo, group II is significantly higher pulp chamber temperature rise than group III, IV(p<0.05), and group IV is significantly higher pulp chamber temperature rise than group I(p<0.05), and it does not significantly differ between group I and III. 6. In the group of composite resin light-cured with Lux-O-Max, it is found the significantly lower pulp chamber temperature rise than any other groups (p<0.05).

  • PDF