• Title/Summary/Keyword: LED encapsulant

Search Result 11, Processing Time 0.02 seconds

Improvement of Light Extraction Efficiency of LED Packages Using an Enhanced Encapsulant Design

  • Choi, Hyun-Su;Park, Joon-Sik;Moon, Cheol-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2014
  • We optimized the design of the flat encapsulant of a light-emitting diode (LED) package to obtain higher light output power (LOP), both by experiment and simulation using three-dimensional ray-tracing software. In the experiment, the refractive index of the encapsulant was varied (1.41 and 1.53). In addition, double-layer structures with these refractive indices (1.41/1.53) were investigated by varying the shape of the interface between the two among flat, concave, and convex. The experiments showed that the LOP of the double-layer encapsulant with convex interface increased by 13.4% compared to the single-layer encapsulant with a refractive index 1.41, which was explained by the increase of the light extraction efficiency (LEE) in connection with the increase of the critical angle (${\theta}_c$) and the decrease of the Fresnel reflection.

Finite Element Analysis of Residual Stress Evolution during Cure Process of Silicone Resin for High-power LED Encapsulant (고출력 LED 인캡슐런트용 실리콘 레진의 경화공정중 잔류응력 발달에 대한 유한요소해석)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong-Jin;Kim, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Silicone resin is recently used as encapsulant for high-power LED module due to its excellent thermal and optical properties. In the present investigation, finite element analysis of cure process was attempted to examine residual stress evolution behavior during silicone resin cure process which is composed of chemical curing and post-cooling. To model chemical curing of silicone, a cure kinetics equation was evaluated based on the measurement by differential scanning calorimeter. The evolutions of elastic modulus and chemical shrinkage during cure process were assumed as a function of the degree of cure to examine their effect on residual stress evolution. Finite element predictions showed how residual stress in cured silicone resin can be affected by elastic modulus and chemical shrinkage behavior. Finite element analysis is supposed to be utilized to select appropriate silicone resin or to design optimum cure process which brings about a minimum residual stress in encapsulant silicone resin.

Light Efficiency of LED Package with TiO2-nanoparticle-dispersed Encapsulant (TiO2 나노입자가 혼합된 봉지재를 적용한 LED 패키지의 광효율 특성 평가)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Kim, Mi-Song;Ko, Eun-Soo;Chio, Jong-Hyun;Moon, Kyoung-Sik;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.31-35
    • /
    • 2014
  • $TiO_2$-nanoparticle-dispersed silicone was applied to a LED package and the light efficiency of the LED package was evaluated in this study. The addition of $TiO_2$ nanoparticles in silicone increased refractive index, which improved the light efficiency of the LED package. The $TiO_2$ nanoparticles were fabricated by hydrothermal synthesis and were dispsersed by a vinyl silane coating treatment. After the silane treatment, the $TiO_2$ nanoparticles dispersed with diameters of 10~40 nm but rod-shape $TiO_2$ nanoparticles with lengths of 100 nm were also observed. The refractive index increased with the $TiO_2$ concentration in silicone, while the transmittance decreased with the $TiO_2$ concentration. The light efficient of the LED package with $TiO_2$+silicone encapsulant was higher than that of the LED package with no $TiO_2$ in silicone encapsulant.

Effect of Curing Method on the Reliability of Silicone Encapsulant for Light Emitting Diode (LED용 실리콘 봉지재의 경화방법이 신뢰성에 미치는 영향)

  • Kim, Wan-Ho;Jang, Min-Suk;Kang, Young-Rae;Kim, Ki-Hyun;Song, Sang-Bin;Yeo, In-Seon;Kim, Jae-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.844-848
    • /
    • 2012
  • Encapsulant curing in terms of convection oven leads to thermal induced stress due to nonuniform thermal conductivity in LED package. We have adopted infrared (IR) light for silicone curing in order to release the stress. The light uniformity irradiated on an encapsulant surface is confirmed to be uniform by optical simulation. Shear strength of die paste using IR compared to convection oven is increased 19.2% at the same curing time, which indicates curing time can be shortened. The indentation depth difference between center and edge of silicone encapsulant in terms of convection oven and IR are 14.8% and 3.4%, respectively. Curing by IR also shows 2.3% better radiant flux persistency rate of LED at $85^{\circ}C$ after 1,000 h reliability test compared to convection curing.

Improvement of Color Temperature Uniformity of Integrated Optic Lens Type LED Packaged using Compression Molding Method (가압성형 방식을 사용한 렌즈 일체형 LED 패키지의 색온도 균일성 향상에 관한 연구)

  • Kim, Wan-Ho;Kang, Young-Rae;Jang, Min-Suk;Joo, Jae-Young;Song, Sang-Bin;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Optical characteristics including the view angle and color temperature uniformity of LED packages with an integrated lens fabricated by compression molding method are investigated according to lens shape, lens materials, and phosphor coating methods. Four types of lens shape are designed and their optical output power dependence on the refractive index of silicone encapsulant are evaluated. Also, spatial color temperature uniformities of packages fabricated with different phosphor coating methods-direct coating on a chip vs. uniformly mixed with silicone encapsulant- are compared at various view angles. As the result, it is found that phosphor coating method is more effective on color temperature uniformity than lens shape. The maximum color temperature difference of a package with direct coating of phosphor on a chip is 1,340K according to the view angle at the color temperature of 5,000K, and that of a package with uniformly mixed phosphor is 250K, which indicates 1,090K improvement of color uniformity for the latter case.

A study of light output characteristics with various refractive indices and geometrical structures of the GaN based light-emitting device encapsulants (질화갈륨계 발광소자 봉지재의 굴절률 및 곡률 변화에 따른 광 출력 특성 연구)

  • Kim, Heyong-Jin;Yoo, Jin-Yeol;Kang, Young-Rae;Kim, Jae-Pil;Kwak, Joon-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we improved the light extraction efficiency by structural change of LEDs on conventional LEDs. We simulated the LEDs light emission as functions of LED side wall angle, various refractive indices the geometrical structures and analyzed the condition improved the light efficiency. We present the results of experimerns and simulations for light output power from LEDs for various refractive indices and the geometrical structures of the LED encapsulants. When the side wall angle range was from 40[$^{\circ}$] to 30[$^{\circ}$], the LED emission increased. LED side wall angle onto LED using the simulation system with a fine tuning of the structure of the LEDs side wall angle is fabricated. Additionally, we changed the side wall angle of LED package with spherical structure and flat structure. The result of spherical structure ray tracting is higher compared with flat structure about 14[%].

Accuracy-Enhancement of Optical Simulation for a White LED Based on Phosphors (백색 LED 패키지용 형광체 광학 시뮬레이션 정확도에 관한 연구)

  • Noh, Ju-Hyun;Jeon, Sie-Wook;Kim, Jae Pil;Song, Sang Bin;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.27-34
    • /
    • 2015
  • There has been a critical issue in optical simulation of phosphors in LEDs due to their light-reabsorption properties. To improve the accuracy of optical modeling for a white LED package, we utilized the spectrum data of the phosphor-dispersed encapsulant film instead of the phosphor powder. By measuring white LED packages with green and red phosphors, the maximum difference between simulation and experimental results of a color temperature, a color rendition index number and a color coordinate corresponds to ${\Delta}T=95K$, ${\Delta}Ra=1.7$ and ${\Delta}xy=0.007$, respectively. Based on those results, the proposed method can well explain the change of emission spectra of white LEDs with more than two phosphors which introduce the complex optical phenomena such as absorption, reabsorption, light emission, reflection and scattering, etc.

A cure process modeling of LED encapsulant silicone (LED 패키징용 실리콘의 경화공정 모델링)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong Jin;Kim, won-Hee
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.84-89
    • /
    • 2012
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for both curing and cooling process during silicone molding. For analysis of curing process, a cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the curing as well as the cooling process should be designed carefully so as to reduce the residual stress although the cooling process plays the bigger role than curing process in determining the final residual stress state. In addition, birefringence experiment was carried out in order to observe residual stress distribution. Experimental results showed that cooling-induced birefringence was larger than curing-induced birefringence.

  • PDF

Preparation of Silicon-Based Hybrid Gels with POSS Additives and Their Application to LED Encapsulants (POSS계 첨가제를 가지는 실리콘 젤의 제조와 LED 봉지재 응용)

  • Eun, Hee-Chun;Im, Hee-Eun;Lee, Yun Sang;Kwark, Young-Je
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.311-316
    • /
    • 2015
  • Densely structured polyhedral oligomeric silsesquioxane (POSS) was employed as an additive to enhance hardness of silicon-based hybrid gels for LED encapsulants. To improve the miscibility of POSS and polysiloxane resin, alkyl or oligosiloxane branches were introduced to POSS moiety. Platinum-catalyzed hydrosilylation reactions were used to attach branches of 1-decanol, 9-decen-1-ol, and vinyl-terminated oligosiloxane to the POSS molecules. Alkyl-branched POSSs (decyl-POSS and decenyl-POSS) were immiscibile with polysiloxane resin and generated gels with low transparency and low hardness values. On the other hand, oligosiloxane-branched POSS (Siloxy-POSS) showed good miscibility with polysiloxane resin to give gels with high transparency. However, the prepared gels did not show noticeable improvement in hardness compared to the gels without the POSS additive.