DOI QR코드

DOI QR Code

Light Efficiency of LED Package with TiO2-nanoparticle-dispersed Encapsulant

TiO2 나노입자가 혼합된 봉지재를 적용한 LED 패키지의 광효율 특성 평가

  • Lee, Tae-Young (Advanced Welding and Joining R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Kyoung-Ho (Advanced Welding and Joining R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Mi-Song (Advanced Welding and Joining R&BD Group, Korea Institute of Industrial Technology) ;
  • Ko, Eun-Soo (EI Lighting Co., Ltd.) ;
  • Chio, Jong-Hyun (EI Lighting Co., Ltd.) ;
  • Moon, Kyoung-Sik (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Kim, Mok-Soon (Dept. of Materials Science and Engineering, Inha University) ;
  • Yoo, Sehoon (Advanced Welding and Joining R&BD Group, Korea Institute of Industrial Technology)
  • 이태영 (한국생산기술연구원 용접접합연구실용화그룹) ;
  • 김경호 (한국생산기술연구원 용접접합연구실용화그룹) ;
  • 김미송 (한국생산기술연구원 용접접합연구실용화그룹) ;
  • 고은수 ((주)이아이라이팅 기술연구소) ;
  • 최종현 ((주)이아이라이팅 기술연구소) ;
  • 문경식 (조지아텍 재료공학과) ;
  • 김목순 (인하대학교 신소재공학과) ;
  • 유세훈 (한국생산기술연구원 용접접합연구실용화그룹)
  • Received : 2014.08.13
  • Accepted : 2014.09.25
  • Published : 2014.09.30

Abstract

$TiO_2$-nanoparticle-dispersed silicone was applied to a LED package and the light efficiency of the LED package was evaluated in this study. The addition of $TiO_2$ nanoparticles in silicone increased refractive index, which improved the light efficiency of the LED package. The $TiO_2$ nanoparticles were fabricated by hydrothermal synthesis and were dispsersed by a vinyl silane coating treatment. After the silane treatment, the $TiO_2$ nanoparticles dispersed with diameters of 10~40 nm but rod-shape $TiO_2$ nanoparticles with lengths of 100 nm were also observed. The refractive index increased with the $TiO_2$ concentration in silicone, while the transmittance decreased with the $TiO_2$ concentration. The light efficient of the LED package with $TiO_2$+silicone encapsulant was higher than that of the LED package with no $TiO_2$ in silicone encapsulant.

본 연구에서는 $TiO_2$ 나노입자를 LED패키지의 봉지재인 실리콘에 분산시키고, 이에 따른 굴절률, 투과율 및 광효율 변화를 평가하였다. $TiO_2$ 나노입자는 LED 봉지재의 굴절율을 증가시켜 LED 패키지의 광추출 효율을 향상시키기 위해 봉지재에 적용되었다. $TiO_2$는 수열합성법을 통해 합성되었고, 합성된 $TiO_2$ 입자에 긴 체인구조의 vinyl silane을 코팅하여 분산시켰다. 분산 처리를 실시한 후에는 대부분의 $TiO_2$ 나노입자가 10~40 nm 이하로 분산되었으나, 100 nm 이상의 긴 입자도 관찰되었다. 실리콘 봉지재에 $TiO_2$ 나노입자 양이 증가할수록 굴절율은 증가하였으나, 투과율은 감소하였다. $TiO_2$ 나노입자가 포함된 실리콘 봉지재로 LED 패키지를 제조하였고, $TiO_2$ 나노입자가 분산된 LED가 $TiO_2$ 나노입자가 없는 LED패키지에 비해 약 13% 이상 광효율이 향상되었다.

Keywords

References

  1. Y. Koo, G Kim and S. E. Kim, "Developing Low Cost, High Throughput Si Through Via Etching for LED Substrate", J. Microelectron. Packag. Soc., 19(4), 19 (2012). https://doi.org/10.6117/kmeps.2012.19.4.019
  2. H. W. Shin, H. S. Lee, J. O. Bang, S. Yoo, S. B. Jung and K. D. Kim, "Variation of Thermal Resistance of LED Module Embedded by Thermal Via", J. Microelectron. Packag. Soc., 17(4), 95 (2010).
  3. Y. Zhou, N. Tran, Y. C. Lin, Y. Z. He and F. G. Shi, "One- Component, Low-Temperature, and Fast Cure Epoxy Encapsulant with High Refractive Index for LED Applications", IEEE Trans Adv. Packag., 31, 484 (2008). https://doi.org/10.1109/TADVP.2008.924233
  4. T. Fujii, Y. Gaou, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, "Increase in The Extraction Efficiency of GaNBased Light-Emitting Diodes Via Surface Roughening", Appl. Phys. Lett., 84, 855 (2004). https://doi.org/10.1063/1.1645992
  5. P. Tao, A. Viswanath, Y. Li, R. W. Siegel, B. C. Benicewicz, and L. S. and Schadler, "Bulk Transparent Epoxy Nanocomposites Filled with Poly(Glycidyl Methacrylate) Brush- Grafted $TiO_{2}$ Nanoparticles", Polymer, 54, 1639 (2013). https://doi.org/10.1016/j.polymer.2013.01.032
  6. C. L. Lu and B. Yang, "High Refractive Index Organic Inorganic Nanocomposites: Design, Synthesis and Application", J. Mater. Chem., 19, 2884 (2009). https://doi.org/10.1039/b816254a
  7. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. N. Gao, B. C. Benicewicz, R. W. Siegel and L. S. Schadler, "$TiO_{2}$ Nanocomposites with High Refractive Index and Transparency", J. Mater. Chem. 21, 18623 (2011). https://doi.org/10.1039/c1jm13093e
  8. S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, "Refractive Index Engineering of Transparent $ZrO_{2}$- Polydimethylsiloxane Nanocomposites", J. Mater. Chem., 18(15), 1751 (2008). https://doi.org/10.1039/b715338d
  9. F. W. Mont and E. F. Schubert, "High Refractive Index $TiO_{2}$ Nanoparticle Loaded Encapsulants for Light-Emitting Diodes", J. Appl. Phys., 103, 083120 (2008). https://doi.org/10.1063/1.2903484
  10. M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim and C. Sone, "Effects of The Refractive Index of The Encapsulant on The Light-Extraction Efficiency of Light-Emitting Diodes", Optics Express, 19(19), A1135 (2011). https://doi.org/10.1364/OE.19.0A1135
  11. Y. Liu, Z. Y. Lin, X. Y. Zhao, K. S. Moon, S. Yoo and C. P. Wong, "ZnO Quantum Dots-Filled Encapsulant for LED Packaging", Proc. 62nd IEEE Electronic Components and Technology Conference (ECTC), San Diego, 2140, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2012).
  12. G. J. Ruiterkamp, M. A. Hempenius, H. Wormeester and G. J. Vancso, "Surface Functionalization of Titanium Dioxide Nanoparticles with Alkanephosphonic Acids for Transparent Nanocomposites", J. Nanoparticle Res., 13(7), 2779 (2011). https://doi.org/10.1007/s11051-010-0166-1
  13. R. J. Nussbaumer, W. R. Caseri, P. Smith and T. Tervoort, "Polymer-$TiO_{2}$ Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials", Macromolecular Mater. Eng., 288(1), 44 (2003). https://doi.org/10.1002/mame.200290032
  14. B. T. Liu, S. J. Tang, Y. Y. Yu and S. H. Lin, "High-Refractive- Index Polymer/Inorganic Hybrid Films Containing High $TiO_{2}$ Contents", Colloid. Surf. A, 377(1-3), 138-143 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.046
  15. Y. Yang, W. N. Li, Y. S. Luo, H. M. Xiao, S. Y. Fu and Y. W. Mai, "Novel Ultraviolet-Opaque, Visible-Transparent and Light-Emitting ZnO-QD/Silicone Composites with Tunable Luminescence Colors", Polymer, 51(12), 2755-2762 (2010). https://doi.org/10.1016/j.polymer.2010.03.056
  16. Y. Yang, Y. Q. Li, H. Q. Shi, W. N. Li, H. M. Xiao, L. P. Zhu, Y. S. Luo, S. Y. Fu and T. X. Liu, "Fabrication and Characterization of Transparent ZnO-$SiO_{2}$/Silicone Nanocomposites with Tunable Emission Colors", Composites B, 42(8), 2105 (2011). https://doi.org/10.1016/j.compositesb.2011.05.004
  17. Y. Yang, Y. Q. Li, S. Y. Fu and H. M. Xiao, "Transparent and Light-Emitting Epoxy Nanocomposites Containing ZnO Quantum Dots as Encapsulating Materials for Solid State Lighting", J. Phys. Chem. C, 112(28), 10553 (2008). https://doi.org/10.1021/jp802111q
  18. T. Y. Lee, M. S. Kim, E. S. Ko, J. H. Choi, M. G. Jang, M. S. Kim and S. Yoo, "Properties of High Power Flip Chip LED Package with Bonding Materials", J. Microelectron. Packag. Soc., 21(1), 1 (2014).
  19. Y. Liu, Z. Lin, X. Zhao, C. C. Tuan, K. S. Moon, S. Yoo, J. Choi and C. P. Wong, "High Refractive Index and Transparent Nanocomposites as Encapsulant for High Brightness LED Packaging", IEEE Trans. Adv. Packag., will be published.
  20. J. Ida, T. Honma, S. Hayashi, K. Nakajima, E. Wada and A. Shimizu, "Pressure Effect on Low-Temperature $TiO_{2}$ Synthesis", J. Phys., 215(1), 1 (2010).

Cited by

  1. Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.127