• Title/Summary/Keyword: LED Plant Factory

Search Result 86, Processing Time 0.027 seconds

Sterilization Analysis of Harmful Microbes in LED Plant Factory using UV LED (UV LED를 이용한 LED식물공장 유해미생물 살균 분석)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) application research is studying by using a specific wavelength. LED plant factory produced a lot of green plants in a closed spaces, so it should be taken to guard against harmful microbes. Until today, a lot of studies for green plant production in plant factory is proceed but there were no study on harmful microbes in plant factory. Thus, the analysis on sterilization for harmful microbes in plant factory were experimented using UV (Ultra Violet) LED with 282nm of wavelength. As a results on sterilization of three harmful microbes, 50% of sterilization efficiency was achieved after 2.5 hours, 97% was achieved after 12 hours of UV LED irradiation, respectively.

An Experimental Study on Plant Factory System Applied Photovoltaic System and LED Lighting (태양전지와 LED 조명을 이용한 가정용식물공장 시스템 실증시험)

  • Yang, Jun-Woo;Chung, Dong-Yeol;Kim, Jeong-Yeol;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.37-40
    • /
    • 2013
  • Plant factory industry as a new agriculture is in the spotlight. In this paper, we experimented plant factory applied photovoltaic system and LED lighting. For growing the plant, red, blue and white LED were placed into 1:4:3. Electric power generated by the photovoltaic system was supplied on DC power supply instead of AC. The designed and experimented power generation amount per day of photovoltaic system were 2,860 Wh and 2,272 Wh respectively. Plant has not been grown at the dead space of LED lighting so it is required to array LED lighting.

  • PDF

LED array design for optimal combination of plant grown (식물재배를 위한 최적LED 배열조합설계)

  • Lee, Sungwon;Park, Sekwang
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.

A Study on Remote Cultivation Consignment System for Hobby using LED Plant Factory (LED 식물공장을 이용한 취미용 원격 식물재배 위탁 시스템에 대한 연구)

  • Cho, Myeon-gyun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, we propose a system that can provide a environment for plant cultivation in connection with LED plant factories and enable users to participate in plant cultivation remotely to engage in personal hobbies. The proposed system can monitor the growth conditions of plants through various sensors and remotely adjust the cultivation environment required for plant growth through the Arduino system, so that users can feel the satisfaction of plant cultivation and harvesting as a hobby. On the other hand, we suggest a mutual benefit structure for plant factory and users by securing a certain amount of income source to factory, by paying the idle space to the individual online. This paper demonstrates the feasibility of the proposed system by making the prototype of the remote plant cultivation consignment system using the Arduino and Android application(App.), and contributes to popularize the LED plant factories and expand the business area in future.

Hybrid Multi-layer Plant Production Systems using a Sunlight (태양광을 이용한 하이브리드 다개층 식물 생산 시스템)

  • Ryu, Bong-Jo;Kim, Youngshik;Yang, Yun-young;Kim, Sang-Hwal;Jung, Soon-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.175-176
    • /
    • 2014
  • The paper deals with the development of the multi-layer plant production systems using a sunlight and LED. Nowadays most of plant production systems have been developed by plant factory using only LED. In case of plant factory using LED, however, the light quantity is not sufficient for various kinds of medicinal plants. In this paper, authors have tried to apply the both the luminous sources using a natural sunlight and an appropriate LED. During the daytime, a natural sunlight was applied using the Heliostat, while in the nighttime, LED was used. The proposed mixed plant production system was constructed under the various environmental conditions such as $CO_2$ distribution, temperature and humidity. Through the hybrid plant prodution systems, the growth of Ginseng plants were recorded and demonstrated by CCD camera and monitoring program.

  • PDF

A Smart Farming System Based on Visible Light Communications (가시광 무선통신 기반의 스마트 농업 시스템)

  • Yeom, Tae-Hwa;Park, Sung-Mi;Kwon, Hye-In;Hwang, Duck-Kyu;Kim, Jeongchang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.479-485
    • /
    • 2013
  • In this paper, we propose a smart farming system using the visible light communication based on the software defined radio (SDR) technology and the conventional RF radio. The proposed system can continuously monitor growth environments of the LED plant factory and automatically control the LED plant factory to keep optimal growth environments. Furthermore, by creating a database from various growth factors, the LED plant factory can be efficiently managed.

Solar Tracking Performance using a Heliostat and Uniform Irradiation of LED Light for a Plant Factory (식물공장의 헬리오스탯을 이용한 태양광 추적성능 및 LED 균일광 조사)

  • Koo, Kyung-Wan;Kim, Tae-Jin;Kim, Youngshik;Ryu, Bong-Jo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1761-1767
    • /
    • 2015
  • This paper deals with the solar tracking performance using a small heliostat, the light reduction rate of the sun light, and the performance of uniform irradiation of LED light for a plant factory. A high precision encoder is attached to the heliostat to improve tracking accuracy. As a result, our heliostat-based solar tracking systems track efficiently the movement of the sun light in experimental tests. The reduction rate of the sun light in the plant factory is then measured by using an illumination sensor. The average reduction rate is 4.29%, which represents lower light reduction rates. In uniform irradiation tests of LED light, sixteen points are measured, and overall deviations of irradiation were within eight percents.

A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory (식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구)

  • Yoon, Cheol-Gu;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

A Study on The Photosynthesis Accelerate by Light Color Composition in Plant Factory (식물공장 광원의 색조합에 따른 광합성활성화에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.368-375
    • /
    • 2016
  • This study examined the criteria for efficient LEDs used throughout the experiment of an LED with another light color growth to be used in a plant factory. The experiment was confirmed by measuring the Red-LED, Blue-LED, plant growth, and amount of carbon reduction in a White-LED environment. The white-LED showed a similar growth trend to the Red-LED. Blue-LED showed the lowest growth. Measurements of the carbon dioxide levels, showed that the Red-LED and blue LED produced the lowest levels. The combination of the ratio of the LED showed four Red-LEDs and one blue LED to be the higher of the two. In addition, three Red-LED and one Blue-LED produced equal growth to that of the white-LED. In addition, as much as possible, red is the light color that obtains the result suitable for plant factories.

Analysis of Photosynthetic Photon Flux by Prototype of Rotational Lighting System for Plant Factory (식물공장을 위한 회전형 조명시스템 시제품의 광합성유효광양자속 분석)

  • Lee, Won-Sub;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.529-534
    • /
    • 2013
  • Rotational lighting system for plant factory is the way to decrease high installation cost of the existing lighting system. A few of LEDs are used at the rotational lighting system in comparison with the existing lighting system to supply artificial lights to crops. At rotational lighting system, the manufacturing cost becomes very low by comparing with the existing lighting system. In this paper, the photosynthetic photon flux (PPF) is investigated in order that plants may grow. And PPF is analyzed with the rotational speed of blade and LED output by using the rotational lighting system prototype and quantum sensor. It is confirmed that constant PPF value of $200{\mu}mol{\cdot}m^{^-2}{\cdot}s^{^-1}$ is supplied with the blade rotation speed of 20rpm and LED output of IN 73%, CENTER 37% and OUT 50%. By comparing with the lighting system of existing plant factory, there is no difficulty to supply the light needed to grow plants by rotating a few of LEDs.