• Title/Summary/Keyword: LED(Light Emission Diode)

Search Result 85, Processing Time 0.025 seconds

Color tunable electroluminescence with polymer blends composed of PVK and copolymer containing SiPh-PPV and MEH-PPV unit

  • Oh, Gwang-Chae;Yun, Je-Jung;Park, Su-Mi;Son, Sung-Hee;Han, Eun-Mi;Jin, Sung-Ho;Gu, Hal-Bon;Choi, Hyun-Chual
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.736-739
    • /
    • 2002
  • We report on white light emission from a light emitting diode(LED) prepared by blending a red emitting copolymer, m-SiPh PPV-co-MEH PPV, and a blue emitting polyvinylcarbazole (PVK). White light emission was realized when the weight ratio of the m-SiPh PPV-co-MEH PPV : PVK equals to 1 : 30, in which the commission Internationale de L'Eclairage coordinates were x=0.3266 and y=0.3438.

  • PDF

Excitation Based Tunable Emissions from the Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ : $Sm^{3+}/Tb^{3+}$ Phosphors for Novel Inorganic LEDs

  • Raju, G. Seeta Rama;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.156-156
    • /
    • 2011
  • Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were prepared by solvothermal reaction method for light emitting diode (LED) and field emission display (FED) applications. The XRD patterns of these phosphors confirmed their oxyapatite structure in the hexagonal lattice. The visible luminescence properties of these phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam. The photoluminescence (PL) properties of $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were investigated as a function of $Sm^{3+}$ concentration. Cathodoluminescence (CL) properties were examined by changing the acceleration voltage. The CGS : $Sm^{3+}$ showed the dominant orange emission due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition. The CGS : $Tb^{3+}/Sm^{3+}$ phosphor showed the green, white and orange emissions when excited with 275, 378, and 405 nm wavelengths, respectively. The chromaticity coordinates of these phosphors were comparable to or better than those of standard phosphors for LED or FED devices.

  • PDF

Fabrication of White Light Emitting Diode Lamp Designed by Photomasks with Serial-parallel Circuits in Metal Interconnection ($\cdot$병렬 회로로 금속배선된 포토마스크로 설계된 백색LED 조명램프 제조 공정특성 연구)

  • Song, Sang-Ok;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.17-22
    • /
    • 2005
  • LED lamp was designed by the serial-parallel integration of LED chips in metal-interconnection. The 7 $4.5{\times}4.5\;in^{2}$ masks were designed with the contact type of chrome-no mirror?dark. The white epitaxial thin film was grown by metal-organic chemical vapor deposition. The active layers were consisted with the serial order of multi-quantum wells for blue, green and red lights. The fabricated LED chip showed the electroluminescence peaked at 450, 560 and 600 nm. For the current injection of 20 mA, the operating voltage was measured to 4.25 V and the optical emission power was obtained to 0.7 $\mu$W.

  • PDF

Luminescence Characteristics of Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용 Ba2+ Co-Doped Sr2SiO4:Eu 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.169-172
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;{(Sr,Ba)}_2SiO_4$ yellow phosphor and investigated the development of blue LEDs by combining the phosphor with a InGaN blue LED chip (${\lambda}_{em}$=405 nm). The InGaN-based ${(Sr,Ba)}_2SiO_{4}:Eu$ LED lamp shows two bands at 405 nm and 550 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the ${(Sr,Ba)}_2SiO_{4}:Eu$ phosphor. The 550 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the ${(Sr,Ba)}_2SiO_4$ host matrix. In the preparation of UV Yellow LED Lamp with ${(Sr,Ba)}_2SiO_{4}:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the epoxy-to-yellow phosphor ratio of 1:0.45. At this ratio, the CIE chromaticity was x=0.4097 and y=0.5488.

Synthesis of Conjugated Copolymers with phenothiazine and Azomethine Units and their Electro-Optic Properties

  • Seo, Hyeon-Jin;Jang, Byeung-Jo;Chang, Jin-Gyu;Park, Lee-Soon
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • Three types of conjugated polymers, poly(PZ-Pi), poly(PZ-BPI) and poly(PZ-NPI) were synthesized by Schiff-base reaction. These new conjugated polymers exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as azomethine groups, Double layer LEDs made with the synthesized polymers as emitting layer and $Alq_3$, as electron transporting layer exhibited enhanced EL emission and efficiency compared to those of single layer LEDs. Double layer LEDs exhibited gradual shift in the emission peak th the single layer LED, made of only $Alq_3$ as the emitting layer as the thickness of $Alq_3$ layer increased.

  • PDF

Modeling of Mixed Phosphors in White Light Emitting Diode (백색 발광다이오드에서의 혼합 형광체 모델링)

  • Kim, Dowoo;Gong, Dayeong;Gong, Myeongkook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.567-574
    • /
    • 2013
  • An optical model is proposed in the white LED using phosphor and LED chip. In this paper a new model that describes the absorption rate and quantum efficiency with increasing the mixing ratio of phosphor in silicone, and the allotment of the phosphor absorption optical power in the several phosphor mixing in the silicone. Single phosphor in silicone from the optical measurement data before and after molding, the solution to get the blue optical power and the phosphor emission optical power is proposed. By these solution the absorption rate and the quantum efficiency was obtained. The model with single phosphor mixing in the silicone the validity was confirmed.

Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si (p형 Si 기판위에 성장된 ZnO 다층형복합구조의 이종접합구조 LED 제작)

  • Kim, Dong-Chan;Kong, Bo-Hyun;Han, Won-Suk;Choi, Mi-Kyung;Cho, Hyung-Koun;Lee, Jong-Hun;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.84-84
    • /
    • 2008
  • A multidimensional ZnO light-emitting diode LEDstructure comprising film/nanorods/substrate was fabricated on a p-type Si substrate using metal organic chemical vapor deposition at relatively low growth temperature. The filmlike top layer used for the metal contact was continuously formed on the ZnO nanorods by varying the growth conditions and the resulting structure allowed us to utilize the nanorods with intense emission as an active layer. We investigated the performance of the resulting multidimensional LED. An extremely high breakdown voltage and low reverse leakage current as well as typical rectification behavior were observed in the I-V characteristics.

  • PDF

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings (OLED 조명을 위한 Yellow, Orange, Red 인광 재료)

  • Jung, Hyocheol;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-250
    • /
    • 2015
  • Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

Luminescent Properties of Four-Band White Light Emitting Diodes (사파장 백색 발광 다이오드의 발광 특성)

  • Young-Duk Huh;Su-Mi Lim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.370-375
    • /
    • 2003
  • $BaMg_2Al_16O_27:Eu,\SrGa_2S_4:Eu$, and ZnCdS:Ag,Cl phosphors were chosen to produce blue, green, and red emissions, respectively, under excitation from a violet light emitting diode (LED). A four-band white LED was obtained by a combination of nonabsorbed violet emission from a violet LED and blue, green, and red emissions from $BaMg_2Al_16O_27:Eu,\SrGa_2S_4:Eu$, and ZnCdS:Ag,Cl phosphors. The luminescent properties of the four-band white LED were also discussed.