• Title/Summary/Keyword: LDH release

Search Result 250, Processing Time 0.028 seconds

Effects of Samul-tang on Nitric Oxide Induced-cytotoxicity in C6 Glial Cell (Nitric Oxide에 의해 유발된 C6 glial 세포독성(細胞毒性)에 대한 사물탕(四物湯)의 방어효과(防禦效果))

  • Kim, Do-Hwan;Kim, Seung-Mo;Cho, Han-Gook;Cha, Yong-Seok;Heo, Yun;Cho, Kwang-Ho;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.535-542
    • /
    • 2000
  • The water extracts of Samul-tang(SMT) has been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extracts of SMT rescues brain cells from ischemic damages. To elucidate the protective mechanism on ischemic induced cytotoxicity, I investigate the regulation of LPS and PMA induced iNOS expression in C6 glial cells. LPS and PMA treatment for 72 h in C6 glial cells markedly induce nitric oxide(NO), but treatment of the cells with the water extracts of SMT decrease. dose dependently nitrite formation. In addition, LPS and PMA treatment for 72 h induce severe cell death and LDH release in C6 glial cells. However treatment of the cells with the water extracts of SMT dose not induce significant changes compare to control cells. Furthermore, the protective effects of the water extracts of SMT is mimicked by treatment of $N^{G}MMA$, a specific inhibitor of NOS. LPS and PMA induced iNOS activation in C6 glial cells cause chromosomal condensation and fragmentation of nuclei by caspase activation. The treatment of the cells with the water extracts of SMT may suppress apoptosis via caspase inhibition by regulation of iNOS expression. Taken together, I suggest that the protective effects of the water extracts of SMT against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effects of Talmyung-san on the Cultured Rat Myocardiac Cell and Vascular Smooth Muscle Cell (탈명산(奪命散)이 배양심근세포(培養心筋細胞) 및 혈관평골근세포(血管平滑筋細胞)에 미치는 영향(影響))

  • Seong, Gang-Gyeong;Bag, Se-Hong
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2000
  • Objectives : Talmyung-san(TMS) has been used for treatment of brain diseases in Chinese traditional medicine. However, little is known about the mechanism by which TMS rescues brain cells from ischemic damages. To elucidate the protective mechanisms of TMS, we execute experiments. Methods : The effects of TMS on ischemia/reperfusion-induced cytotoxicity and generation of nitric oxide(NO) are investigated in primary neonatal myocardial cells and A7rS, aortic smooth muscle cell line. Results : Ischemia/reperfusion itself induces severe myocardial cell death in vitro. However, treatment of the cells with TMS significantly reduces both ischemia/reperfusion-induced myocardial cell death and LDH release. In addition, pretreatment of TMS before reperfusion recovers the lose of beating rates alter ischemia/reperfusion. For a while, the water extract of TMS stimulates myocardial cells to produce NO in a dose dependent manner and it protects the damage of ischemia/reperfusion-induced myocardial cells. Furthermore, the protective effects of the water extract of TMS is mimicked by treatment of sodium nitroprusside, an exogenous NO donor. NG-monomethyl-L-arginine (NGMMA), a specific inhibitor of nitric oxide synthase(NOS), significantly blocks the protective effects of TMS on the cells after ischemia/reperfusion. In addition, on ischemia the water extract of TMS induce NO in A7r5 cell. Conclusions : Taken together, we suggest that the protective effects of TMS against ischemia/reperfusion-induced myocardial damages may be mediated by NO production of myocardial and vascular smooth muscle cell during ischemic condition.

  • PDF

Glucose Deprivation and Immunostimulation Induced Death in Rat Primary Astrocytes is Mediated by Their Synergistic Effect on the Decrease in Cellular ATP Level

  • Choi, Ji-Woong;Yoo, Byoung-Kwon;Yoon, Seo-Young;Jeon, Mi-Jin;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2004
  • In this study we investigated whether ATP loss was involved in the potentiated death of immunostimulated rat primary astrocytes in glucose-deprived condition. Rat primary astrocytes immunostimulated with LPS plus IFN-${\gamma}$ for 48 h underwent death upon glucose deprivation, which dependent on the production of peroxynitrite. Intracellular ATP level synergistically decreased by glucose deprivation in immunostimulated astrocytes but not in control cells, and the loss of ATP occurred well ahead of the LDH release. The synergistic cell death and ATP loss by immunostimulation and glucose deprivation were inhibited by iNOS inhibitor (L-NAME and L-NNA) or peroxynitrite decomposition catalyst (also a superoxide anion scavenger), Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP). Exogenous addition of peroxynitrite generator, SIN-l timedependently induced ATP loss and cell death in the glucose-deprived astrocytes. Depletion of intracellular glutathione (GSH) and dis겨ption of mitochondrial transmembrane potential (MTP) were also observed under same conditions. Supply cellular ATP by the addition of exogenous adenosine or ATP during glucose deprivation inhibited ATP depletion, GSH depletion, MTP disruption and cell death in SIN-l treated or immunostimulated astrocytes. This study showed that perturbation in the regulation of intracellular ATP level in immunostimulated astrocytes might make them more vulnerable to energy challenging stimuli.

Anti-neuronal Injury Effect of Evodiae Fructus Water Extract in Sodium Cyanide-induced SK-N-SH Cell Lines (Sodium Cyanide로 유도된 신경아세포종 세포주에서 오수유의 신경상해 보호효과)

  • Jang Woo-Seok;Lee So-Yeon;Yoon Hyeon-Deok;Shin Oh-chul;Park Chang-Gook;Park Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.135-145
    • /
    • 2005
  • Objectives : This study investigated effect of Evodiae fructus water extract (EVOR) on apoptotic cell death induced by NaCN in SK-N-SH neuroblastoma cell lines. NaCN stimulates glutamate release which can activate glutamate receptors to initiate excitotoxic processes. This study examines the role of EVOR in mediating NaCN-induced cytotoxicity. Methods & Results : Cytotoxicity was assessed by measuring lactate dehydrogenase (LDH) in the culture media. NaCN(0.1mM) produced cytotoxicity following 12hrs of incubation. NaCN-induced cytotoxicity was partially blocked by EVOR. The treatment of EVOR in simultaneous exposure of cultures to NaCN provided complete protection against cytotoxicity. NaCN-induced cytotoxicity was found to inhibit DNA fragmentation, repaired by cell cycle and simultaneous exposure to NaCN, regenerated with neurite outgrowh by EVOR. These results indicate thaf damage by NaCN in neumnal cell cultures was repaired by EVOR, whereas NaCN-induced cytotoxicity is blocked Primarily by activation of anti-apoptosis. Conclusions : These results suggest that EVOR may be beneficial for the treatment of dementia and other degenerative problems of the central nervous system.

  • PDF

Protective Effects of Nueihyuljunbang on LPS Combined PMA Induced Cytotocity in C6 Gilal Cell (LPS와 PMA에 손상된 신경교세포에 대한 뇌혈전방의 방어효과)

  • 서관수;문병순;성강경;임규상;신선호
    • The Journal of Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • Objectives : The water extract of Nueihyuljunbang (NHJB) has long been used for treatment of ischemic brain damage in Oriental Medicine. However, little is known about the mechanism by which the water extract of NHJB recovers brain cens from ischemic damage. Methods : To elucidate the protective mechanism on ischemic induced cytotoxicity, we investigated the regulation of lipopolysaccharide (LPS) and phorbol-12-myristate-13-acetate (PMA)-induced inducible nitric oxide synthase (iNOS) expression in C6 glial cells. Results : LPS combined PMA treatment for 72 hours in C6 glial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of NHJB decreased dose-dependently nitrite formation. In addition, LPS combined PMA treatment for 72 hours induced severe celt death and lactate dehydrogenase (LDH) release in C6 glial cells. However, treatment of the celts with the water extract of NHJB did not induce significant change compared to control cells. Furthermore, the protective effects of the water extract of NHJB were mimicked by the treatment of NGMMA, a specific inhibitor of NOS. LPS combined PMA induced iNOS activation in C6 glial cells caused chromosomal condensation and fragmentation of the nuclei by caspase activation. The treatment of C6 glial cells with the water extract of NHJB might suppress apoptosis via caspase inhibition by regulation of iNOS expression. Conclusions : From the results, we suggest that the protective effects of the water extract of NHJB against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effect of Naenghyo-hwan on Secretion of Airway Mucin and Contractility of Tracheal Smooth Muscle (냉효환(冷哮丸)이 호흡기 뮤신 분비와 기관지 평활근에 미치는 영향)

  • Yoon, Jong-Man;Lee, Yong-Koo;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.54-65
    • /
    • 2007
  • Objectives : In the present study, the author investigated whether Naenghyo-hwan(NHH) significantly affect mucin secretion from airway epithelial cells. Methods : Confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of NHH to assess the effect of the agent on 3H-mucin secretion. Total elutionprofiles of control spent media and treatment sample through Sepharose CL-4B column were analysed. Effect of NHH on contractility of isolated tracheal smooth muscle was investigated. Also, effect of the agent on MUC5AC gene expression in cultured NCI-H292cells was investigated. Possible cytotoxicities of the agent were assessed by measuring both lactate dehydrogenase (LDH) release from HTSE cells and examining the rate of survival and proliferation of NCI-H292 cells. Results : NHH significantly increased mucin secretion from cultured HTSE cells, with significant cytotoxicity. NHH chiefly affected the 'mucin' secretion. NHH inhibited ACh-induced contraction of isolated tracheal smooth muscle. NHH disturbed both the extraction of total RNA from NCI-H292 cells and polymerase chain reaction, nonspecifically. Therefore, in this experiment, theeffect of NHH on the expression levels of MUC 5AC gene in cultured NCI-H292 cells could not be elucidated. Conclusions : The author suggests that the effect of NHH with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Protective Effects of Dohongsamul-tang on 2-deoxy-D-glucose Induced Autophagic Cell Death in C6 Glial Cells (도홍사물탕(挑紅四物湯)이 C6 신경교세포의 2-DG에 의한 오토파지성 세포사멸에 미치는 영향)

  • Shin, Hak-Soo;Lee, Seung-Geun;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.581-589
    • /
    • 2009
  • The water extract of Dohongsamul-tang(DHSMT) has been traditionally used in treatment of ischemic heart and brain diseases in Oriental Medicine. However, little is known about the mechanism by which DHSMT protects C6 glial cells from glucose deprevation induced damages. Therefore, this study was designed to evaluate the protective effects of DHSMT on 2-deoxy-D-glucose induced autophagy of C6 glial cells. Autophagic phenotype is evaluated by fluorescence microscopy and flow cytometry with specific biological staining dyes, including monodansylcadaverine and acridine orange, as well as Western blot analysis with microtubule-associated protein 1 light chain 3(LC3) and Beclin-1. Treatment with 2-deoxy-D-glucose significantly resulted in a decrease of the viability of C6 glial cells and increase of the extracellular LDH release in a dose and time-dependent manner. However, pretreatment with DHSMT protected C6 glial cells from glucose deprivation with 2-deoxy-D-glucose. The author also observed the fact that autophagy phenotype occurred by 2-deoxy-D-glucose in C6 glial cells. Pretreatment with 3-MA, a pharmacological inhibitior of autophagy, abolished the formation of acidic vesicle organelle in C6 glial cells treated with 2-deoxy-D-glucose. However, pretreatment with DHSMT inhibited the formation of autophagic phenotypes, including formation of acidic vesicle organelle, and increase of the expression of LC-3 II Beclin-1 proteins in C6 glial cells treated with 2-deoxy-D-glucose. Taken together, these data suggest that DHSMT is able to protect C6 glial cells from glucose deprivation with marked inhibition of autophagy formation.

Cytocidal Effect of TALP-32 on Human Cervical Cancer Cell HeLa (TALP-32의 인체자궁암 세포주 HeLa에 대한 세포독성)

  • Park, Ji-Hoon;Kim, Jong-Seok;Yun, Eun-Jin;Song, Kyoung-Sub;Seo, Kang-Sik;Kim, Hoon;Jung, Yeon-Joo;Yun, Wan-Hee;Lim, Kyu;Hwang, Byoung-Doo;Park, Jong-Il
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • TALP-32 is highly basic protein with a molecular weight of 32 kDa purified from human term placenta. Some basic proteins such as defensins and cecropins are known to induce cell death by increasing membrane permeability and some of them are under development as an anticancer drug especially targeting multi-drug resistant cancers. Therefore, we investigated cytotoxic effect and mechanism of TALP-32 When HeLa cell was incubated with TALP-32, cytotoxicity was increased in time and dose dependent manner. As time goes by, HeLa cells became round and plasma membrane was ruptured. Increase of plasma membrane permeability was determined with LDH release assay. Also in transmission electron microscopy, typical morphology of necrotic cell death, such as cell swelling and intracellular organelle disruption was observed, but DNA fragmentation and caspase activation was not. And necrotic cell death was determined with Annexin V/Pl staining. The cytotoxicity of TALP-32 was minimal and decreased or RBC and Hep3B respectively. These data suggests that TALP-32 induces necrosis on rapidly growing cells but not on slowly growing cells implicating the possibility of its development of anticancer peptide drug.

Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri

  • Jeong, Seok-Ryoul;Kang, Su-Yeon;Lee, Sang-Chul;Song, Kyoung-Ju;Im, Kyung-Il;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • The nfa 1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polycional antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dose-dependent manner.

Protection of LLC-PK1 Cells Against Hydrogen Peroxide­Induced Cell Death by Modulation of Ceramide Level

  • Yoo Jae Myung;Lee Youn Sun;Choi Heon Kyo;Lee Yong Moon;Hong Jin Tae;Yun Yeo Pyo;Oh Seik Wan;Yoo Hwan Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC­PK1 cells were treated with H$_2$O$_2$ in the absence of serum to induce cell death. Subsequent to exposure to H$_2$O$_2$, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H202-treated control cells, it was observed that 0.5 $\mu$M of desipramine and 25 $\mu$M of NAC exhibited about 90 and $95\%$ of cytoprotection, respectively, against H$_2$O$_2$-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and $3\%$ respectively, when compared to $71\%$ in H$_2$O$_2$-exposed cells. Cellular glutathione level in 500 $\mu$M H202-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H$_2$O$_2$-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H$_2$O$_2$-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.