• Title/Summary/Keyword: LDH activities

Search Result 394, Processing Time 0.028 seconds

Effect of Fermented Water Extracts from Ligularia fischeri on Hepatotoxicity Induced by D-Galactosamine in Rats (D-Galactosamine 투여 랫트에서 곰취 열수 추출 발효물이 간 독성 저하에 미치는 영향)

  • Yu, Keun-Hyung;Lee, Sun-Yeop;Yang, Hyun-Mo;Ham, Young-Ahn;Lee, Soo-Ung;Chae, Seoung-Wan;Lee, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1422-1430
    • /
    • 2015
  • This study was conducted to determine the effect of fermented water extracts from Ligularia fischeri (LAF) on reduction of hepatotoxicity induced by D-galactosamine (D-GalN) in rats. In this experiment, male Sprague-Dawley rats were used as experimental animals, which were divided into eight groups: normal group, D-GalN-treated group (control), D-GalN and non-fermented water extracts from Ligularia fischeri (LA)-treated groups [100, 200, and 400 mg/kg BW (body weight)], and D-GalN and LAF-treated groups (100, 200, and 400 mg/kg BW). ${\gamma}$-Glutamyl transferase, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activities in serum of the D-GalN and LAF-treated groups decreased significantly compared to those of the control group (P<0.05). The high density lipoprotein-cholesterol levels of the D-GalN and LAF-treated groups increased significantly compared to those of the control group (P<0.05). The low density lipoprotein-cholesterol and triglyceride levels of the D-GalN and LAF-treated groups decreased significantly compared to those of the control group (P<0.05). The atherogenic index values of the D-GalN and LAF-treated groups decreased significantly compared to those of the control group (P<0.05), and their high density lipoprotein cholesterol by total cholesterol ratio increased significantly in these groups (P<0.05). Superoxide dismutase activity of liver tissues were enhanced significantly (P<0.05) in the D-GalN and LAF-treated groups compared to that of the control group (P<0.05), whereas their malondialdehyde content decreased significantly in these groups (P<0.05). The histopathological observations revealed apoptotic cells and mild portal inflammation in liver tissues of the D-GalN and LAF-treated groups. Taken together, these results demonstrate that LAF may improve plasma lipid profile and alleviate hepatic damage.

Antiglycemic Effect of Carnosine in Diabetic Mice (당뇨 마우스에서 카르노신의 혈당강하 효과)

  • Hue, Jin-Joo;Kim, Jong-Soo;Kim, Jun-Hyeong;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • Carnosine is a dipeptide ($\beta$-alanyl-L-histidine) found in mammalian brain, eye, olfactory bulb and skeletal muscle at high concentrations. Its biological functions include antioxidant and anti-glycation activities. The objectives of this study were to investigate anti-diabetic effects of carnosine as determined by blood glucose levels in glucose tolerance test (GTT) and insulin tolerance test (ITT), insulin level and serum biochemical and lipid levels in male C57BL/6J db/db mice. There were five experimental groups including normal (C57BL/6J), control (vehicle), and three groups of carnosine at doses of 6, 30, and 150 mg/kg b.w. Carnosine was orally administered to the diabetic mice everyday for 8 weeks. There was no significant difference in body weight changes in carnosine-treated groups compared to the control. The treatments of carnosine significantly decreased the blood glucose level in the diabetic mice compared with the control (p < 0.05) after 5 weeks. The treatments of carnosine also significantly decreased the blood glucose levels in GTT and ITT and glycosylated hemoglobin (HbA1c), compared with the control (p < 0.05). Carnosine at the dose of 6 mg/kg significantly decreased the serum insulin level compared to the control (p < 0.05). Carnosine significantly increased total proteins but significantly decreased lactate dehydrogenase and blood urea nitrogen compared with the control (p < 0.05). Carnosine also significantly decreased glucose, LDL, and triglyceride in the serum of diabetic mice compared to the control (p < 0.05). These results suggest that carnosine has a hypoglycermic effect resulting from reduction of glucose and lipid levels and that high carnosine-containing diets or drugs may give a benefit for controlling diabetes mellitus in humans.

Protective Effect of Functional Perilla frutescens Hot-water Extract Against tert-butyl hydroperoxide-Induced Liver Oxidative Damage in Rats (랫드에서의 t-BHP 유발 산화스트레스에 대한 기능성 들깻잎 열수 추출물의 간 보호 효과)

  • Yang, Sung-Yong;Kang, Jeong-Han;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Perilla frutescens usually dieted in East Asian country such as Korea and Japan. Antioxidant, antiinflammatory and anticancer activities of perilla leaves have been founded. In previous study, we confirmed that caffeic acid, major compound of perilla, was accumulation by sucrose aqueous solution and thus antioxidant effect of perilla was enhanced. In this study, we investigated the protective effect of functional perilla leaves extract (PLE) against tert-butyl hydroperoxide(t-BHP) induced-oxidative hepatotoxicity. The pretreatment with PLE (250, 500 and 1000 mg/kg b.w.) for 5 days before a single dose of t-BHP (i.p.; 0.5 mmol/kg) significantly lowered the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase dose-dependently. And we confirmed that the indicators of oxidative stress were remarkably reduced in the liver, such as the glutathione contents and malondialdehyde, marker of lipid peroxidation. Pathological histology of the rat livers tissues showed that PLE reduced the hepatocyte degeneration and neutrophilic infiltration of liver induced by t-BHP. These results suggest that functional perilla frutescens has the protective effect of liver against t-BHP-induced oxidative hepatic stress in rats.

Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells (H2O2 에 의해 유도된 HepG2 세포의 산화적 스트레스에 대한 신품종 방사선 돌연변이 블랙베리 γ-B201의 세포 보호 효과)

  • Cho, Byoung Ok;Lee, Chang-Wook;So, Yangkang;Jin, Chang-Hyun;Yook, Hong-Sun;Byun, Myung-Woo;Jeong, Yong-Wook;Park, Jong Chun;Jeong, Il-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.384-389
    • /
    • 2014
  • The objective of the present study was to investigate the chemical composition of anthocyanin-enriched extract of radiation-induced blackberry (Rubus fruticosus L.) mutant (${\gamma}$-B201) as well as the protective effect of ${\gamma}$-B201 against oxidative stress in vitro. The cytotoxicity, reactive oxygen species (ROS) scavenging capacity, and DNA damage were assessed by WST-1 assay, flow cytometry, and comet assay, respectively. Lactate dehydrogenase, superoxide dismutase, and catalase activities were determined by using a commercial kit. The in vitro results showed that ${\gamma}$-B201 increased the cell viability, reduction of lactate dehydrogenase release, and intracellular ROS scavenging capacity in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells. Furthermore, treatment with ${\gamma}$-B201 attenuated DNA damage in $H_2O_2$-treated HepG2 cells and treatment with ${\gamma}$-B201 restored the activity of superoxide dismutase and catalase in $H_2O_2$-treated HepG2 cells. In conclusion, the present study suggests that ${\gamma}$-B201 blackberry extract can exert a significant cytoprotective effect against $H_2O_2$-induced cell damage.