본 논문에서는 이미지를 시각적 단어로 표현하여 분석하는 기법인 bag-of-visual words (BoW) 모델을 기반으로 latent dirichlet allocation (LDA) 모델을 결합하여 시각적 단어의 구조를 파악하여 이미지를 분류할 수 있는 모델을 제안한다. 우선 이미지를 시각적 단어로 기존의 방법보다 정확하게 표현하기 위해서 희소 부호화(sparse coding) 기법을 적용한다. 기존의 BoW 모델은 하나의 이미지 패치를 하나의 단어로 표현하였지만, 희소 부호화 기법을 통해 하나의 이미지 패치를 여러 개의 단어로 표현할 수 있다. 제안하는 모델을 이용하여 이미지를 분류하기 위해서 분류 성능 측정에 많이 쓰이는 multi-class SVM 기법을 이용한다. UIUC 스포츠 데이터를 이용한 성능 측정을 통해 제안한 기법의 클래스 분류 성능을 검증하였다.
2020년 신종 코로나바이러스 감염증(코로나19)으로 인한 전 세계적인 팬데믹으로 교육 현장에도 큰 변화가 있었다. 대학에서는 보조 교육 수단으로 생각했던 원격수업을 전면 도입하였고 비대면 수업이 일상화되어 교수자와 학생들은 새로운 교육환경에 적응하기 위해 큰 노력을 기울이고 있다. 이러한 변화 속에서 비대면 강의의 질적 향상을 위하여 강의 만족도 영향요인에 관한 연구가 필요하다. 본 연구는 코로나 전과 후로 변화된 대학 강의 만족도 영향요인을 파악하기 위해 빅데이터를 활용한 새로운 방법론을 제시하고자 한다. 토픽 모델링을 활용하여 코로나 전과 후의 강의평을 분석하고 이를 통해 강의 만족도 영향요인을 파악하여 대학교육이 나아가야 할 방향성을 제언하였다. 또한, 딥러닝 언어 모델인 KoBERT를 기반으로 0.84의 F1-score를 보이는 토픽 분류 모델을 구축함으로써 강의의 만족, 불만족 요인을 다각도로 파악할 수 있으며 이를 통해 강의 만족도의 지속적인 질적 향상에 기여할 수 있다.
자살은 전 세계 사망 원인 중 4위이며 사회, 경제적 손실이 큰 난제이다. 본 연구는 자살 예방을 위하여 소셜미디어에 나타난 자살 관련 말뭉치를 구축하고 이를 통해 자살 경향 문헌을 분류할 수 있는 딥러닝 자동분류 모델을 만들고자 하였다. 또한, 자살 요인을 분석하기 위해 주제를 자동으로 추출하는 분석 기법인 토픽모델링을 활용하여 자살 관련 말뭉치를 세부 주제로 분류하고자 하였다. 이를 위해 소셜미디어 중 하나인 네이버 지식iN에 나타난 자살 관련 문헌 2,011개를 수집한 후 자살예방교육 매뉴얼을 기준으로 자살 경향 문헌 및 비경향 문헌 여부를 주석 처리하였으며, 이 데이터를 딥러닝 모델(LSTM, BERT, ELECTRA)로 학습시켜 자동분류 모델을 만들었다. 또한, 토픽모델링 기법의 하나인 LDA 기법으로 주제별 문헌을 분류하여 자살 요인을 발견하였고 이를 심층적으로 분석하기 위해 주제별로 동시출현 단어 분석 및 네트워크 시각화를 진행하였다.
본 논문에서는 여러 연구기관에서 논의하고 있는 데이터 기반 평가 방법론 중 토픽모델링 기법을 이용하여 계량적인 값을 도출하고 그 과정에서 실제 전문가들이 수행하는 국가연구개발사업과제와 이를 법률과 정책실무에서 다루는 국회 상임위원회 간의 정책적 인식 차이가 있는지 ICT 분야를 중심으로 파악해 보고자 한다. 먼저 HAN 모델로 사업과제 데이터를 학습하여 ICT 문서를 분류하는 모델을 만들고, 해당 모델을 통해 분류된 ICT 문서를 대상으로 LDA 토픽모델링 분석을 수행하여 국가연구개발사업과제 데이터와 국회 상임위원회 회의록에서 도출된 토픽과 분포를 비교한다. 구체적으로 총 26개의 토픽이 도출되었으며, 각 토픽이 포함하는 단어와 문서 분포 비율을 살펴봤을 때, 국가사업과제는 상대적으로 전문적인 주제의 문서가 많았으며, 국회 상임위원회는 상대적으로 사회적이고 대중적인 문제를 다루는 것으로 나타나 인식에 다소 차이가 있는 것으로 보였다. 인식의 차이를 수치적으로 확인할 수 있는 만큼, 향후 정책이나 과제 평가에 사용할 수 있는 지표에 대한 기초연구로 활용 가능할 것이다.
요즘 스마트폰, 각종 전자기기 등의 사용이 늘고, 인터넷과 SNS가 활성화되며 우리는 정보의 홍수 속에 살고 있다. 정보의 양이 기하급수적으로 증가하며 많은 정보를 다 살펴보는 것이 어려워졌고, 문서에서 핵심 키워드만 보기를 원하는 사람이 늘어나며 정보의 핵심이 되는 토픽을 추출하는 연구의 중요성이 증가하고 있다. 또한, 토픽을 추출하여 과거와 비교 분석하여 현재의 트렌드를 유추해내는 것도 최근 중요한 이슈이다. 토픽 모델링 기법을 이용하여 대량의 문서에서 토픽을 추출해낼 수 있으며, 이렇게 추출된 토픽은 트렌드 예측, 데이터 분석 등 다양한 분야에서 쓰일 수 있다. 본 논문에서는 빠르게 변하는 트렌드를 분석하여 시대의 흐름에 맞춰가기 위해 확률적 토픽 모델 기법의 하나인 LDA 알고리즘을 활용하였으며, 문서에서 컴퓨팅 분야의 2016, 2017, 2018년도 3개년 논문의 주제를 알아보고, 연구의 동향과 흐름을 분석한다.
인터넷 미디어의 발달과 함께 온라인 문서의 양이 급격하게 증가함에 따라, 문서 요약과 정보 검색 등 다양한 분야에 활용가능한 키워드를 자동으로 찾고자하는 연구가 활발히 진행되고 있다. 하지만 기존의 키워드 추출 연구들은 문서에서 나타나는 키워드만을 대상으로 하고 있어, 문서에서 등장하지 않는 잠재 키워드를 추출하지 못하는 한계를 갖고 있다. 잠재 키워드는 실데이터 키워드의 1/4 이상을 차지하고 있으며, 문서에서 나타나지는 않지만 문서의 중요한 개념이나 내용을 함축하고 있어 문서 요약 및 정보 검색에 중요한 역할을 차지할 수 있다. 특히 SNS와 같이 내용이 적어 키워드가 명시적으로 나타나기 어려운 문서에서 유용하게 활용될 수 있다. 본 논문에서는 잠재 키워드를 추출하기 위해 주어진 문서와 유사한 문서의 키워드를 후보 키워드로 선택하고 후보 키워드를 구성하는 개별 단어들을 이용해 후보 키워드의 중요도를 평가하는 방법을 제안한다. 실험을 통해, 제안 기법이 잠재 키워드를 합리적인 수준으로 추출할 수 있음을 보였다.
본 연구는 피기백 화차운송 시스템의 특허문서를 활용하여 관련 분야의 유망기술을 파악하는 것을 목표로 한다. 이를 위해 피기백 운송 시스템의 선행연구 및 관련 보고서로 기술 키워드를 추출하여 특허문서를 추출한다. 추출된 특허문서에 텍스트마이닝 기법을 적용하여 빈도수가 높은 키워드를 확인하고 피기백 운송 시스템의 핵심기술의 토픽을 식별하기 위해 LDA(Latent Dirichlet Allocation) 알고리즘을 적용하였다. 마지막으로, 시계열 분석 기법인 ARIMA 모델을 핵심기술의 토픽에 적용하여 기술 추세를 예측하고 피기백 운송 시스템에 대한 유망한 기술을 식별하였다. 특허 분석 결과, 데이터 기반 통합관리 시스템과 운영 계획 시스템 그리고 복합수송 중 특수 화물(기체, 액체류) 운송 및 보관 기술이 미래에 유망한 핵심기술로 도출되었고, 데이터 송수신 및 분석 기술이 중요한 세부 기술임을 확인하였다. 제안된 분석 방법은 피기백 운송 시스템의 R&D 연구개발 전략 및 기술 로드맵을 개발하는 데 있어 충분한 자료가 될 수 있다.
이 연구는 2019년 판문점 남북미 정상 회동 트윗을 타임 시퀀스와 함께 수집하여 시퀀셜 토픽모델링인 DTM으로 분석하였다. 트위터와 같은 마이크로 블로깅 서비스는 단일 이벤트에 뉴스와 오피니언이 혼재된 비정형 데이터가 대규모로 동시에 발생하고, 정보와 반응이 동일 메시지 형식으로 생산된다. 때문에 토픽 트렌드를 파악하려면 시퀀셜 데이터의 특성을 반영하여 패턴 분석을 해야 맥락적 의미를 알 수 있다. 토픽 일관성 점수를 구해 LDA를 평가한 후 DTM을 계산한 결과, 뉴스 보도와 오피니언 관련 토픽 30개가 도출되었고, 각 토픽과 키워드는 시간에 따라 발생 확률이 역동적으로 진화하고 있었다. 결론적으로 DTM은 특정 이벤트에 대한 사회 전반에 나타난 통합적 토픽 추이를 시간에 따라 분석하는데 적합한 모델임을 밝혔다.
카테고리별 베스트셀러를 통해 트렌드 파악 및 사용자 맞춤형 도서 추천을 위해 카테고리별로 도서 데이터를 수집하고, 대용량 데이터인 위키피디어 데이터를 이용하여 워드임베딩 모델을 구축한다. 도서 데이터에 대한 키워드 분석 및 LDA 주제분석 기법에 의해 카테고리별 핵심 단어 분석을 통해 도서 트렌드를 파악하고, 사용자 맞춤형 도서 정보 제공 및 도서를 추천하는 기능을 구현한다.
기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 비교와 점 단위 비교 방법과 비교하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분절단위 방법 외에 선형판별분석에 의한 매칭방법을 고려한 서명 검증 기법을 제안한다. 최종 검증단계에서 두 개의 독립모델을 효과적으로 융합할 수 있는 확률기반의 베이지안 분류기를 적용하였다 다양한 서명데이타를 이용하여 실험한 결과 제안된 기법은 분절단위 기반 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.