• Title/Summary/Keyword: LCD CCFL-backlight

Search Result 98, Processing Time 0.024 seconds

Characteristic Analysis for CCFL drive of LCD backlight (LCD용 백라이트의 CCFL 구동을 위한 특성해석)

  • Ju, Gyeong-Don;Yoon, Shin-Yong;Kim, Cherl-Jin;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.199-202
    • /
    • 2004
  • CCFL(Cold Cathode Fluorescent Lamp) are used to backlight of LCD(Liquid Crystal Display). This paper presents analysis of half-bridge type resonant inverter of CCFL drive in order to stable characteristics, and fluorescent lamp operation frequency is higher than resonant frequency for safe operation. Besides, The Piezoelectric ceramic transformer (PZT) is electro-mechanical device that transfers electrical energy through a mechanical vibration. The modified equivalent circuit model of the PZT considering the operating current level is derived to design the CCFL. The validity of this study was confirmed from the simulation and experiential result.

  • PDF

Design and Application of PFC Direct Drive Inverter for LCD-TV (LCD-TV용 PFC Direct 구동 인버터의 설계와 응용)

  • Ko, Tae-Seok;Jung, Yong-Joon;Hong, Sung-Soo;Han, Sang-Kyu;Jang, Byung-Jun;Jang, Young-Su;Han, Seung-Ho;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.52-59
    • /
    • 2010
  • The conventional CCFL (Cold Cathode Fluorescent Lamp) inverter used in the backlight unit for LCD-TV, composed of the three power stage, can degrade the whole power conversion efficiency. In this paper, a novel scheme to drive the CCFL, composed only of the two power stage without using a dc/dc power stage, is proposed to enhance the whole power conversion efficiency. By adopting the proposed "4-in-1 Transformer", the current balance and the simultaneous ignition among the four CCFL lamp are assured with the one inverter circuit. The proposed scheme features the simple circuit structure, which can save the volume and the cost in the LCD backlight unit. Design considerations are discussed and design procedures are derived. Experimental results of the proposed scheme for 40" LCD-TV are presented to confirm the theoretical analysis.

Display power analysis and design guidelines to reduce power consumption

  • Issa, Joseph
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Cold cathode fluorescent lamps (CCFLs) are used to provide lighting for liquid crystal displays (LCDs). This paper presents a set of guidelines for measurement characterization and design to reduce the power consumption of CCFL LCD backlight inverters and panel electronics. The proposed methods aim to reduce the backlight power consumption by fine-tuning a back-light inverter for a specific LCD, using several methods. First, the authors describe their power measurement methodology; and next, they identify different areas for tuning a backlight inverter for a given display. The experiment results showed that power savings can range from 50 to 200mW if the backlight inverter is properly tuned. This paper also proposes an optimized configuration for light-emitting device (LED) panels to reduce power loss by selecting a LED with a specific input voltage and number of cells to help minimize power loss.

Study on High Efficiency EEFL Backlight inverter for 32-inch LCD TV

  • Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woon;Min, Sook-Kyu;Kim, Hyun-Jin;Jeon, Hyoung-Jun;Kim, Jong-Sun;Mim, Byoung-Woon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.405-407
    • /
    • 2005
  • As the screen size of LCD increases, EEFL(External Electrode Fluorescent Lamp) has been suggested to be applicable as backlight source for LCD . Since the electrodes of EEFL are outside of the tube, EEFL enhances the lifetime compared with CCFL(Cold Cathode Fluorescent Lamp), and a single inverter can drive multiple EEFL tubes of which luminance is uniform Therefore, a compact design can be realized and the cost of EEFL application would be much lower than that of CCFL. Moreover, EEFL inverter has higher efficiency per unit power than CCFL inverter. In this paper, a complementary full-bridge PWM(Pulse Width Modulation) inverter was designed for 32-inch LCD TV backlight which has 20 EEFL tubes and adapted two different driving methods to the EEFL inverter. The validity of this study is confirmed from the experimental results.

  • PDF

Comparis on of Optical Characteristics between CCFL and EEFL in Direct-Type Backlight Unit (직하형 백라이트에서의 CCFL과 EEFL의 광학특성 비교)

  • Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Lee, Sang-Keuk;Kim, Jong-Hwan;Han, Jeong-Min;Ok, Chul-Ho;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.428-428
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17inch direct-type back light using EEFL(External Electrode Fluorescent Lamp). EEFI has a long life time because the electrode is installed outside of lamp. And it is produced low price than conventional CCFL. It does not need process of installing internal electrode. But EEFL technology has several problems such as difficulty of design driving inverter, and prevents leckage current along the skin of lamps. Therefore, by the optimizing of inverter properties, 7525 nit center luminance was acquired in almost same power consumption condition. It was almost same luminance in CCFL backlight unit. And it was operated stably in low operating temperature such as the value of $40^{\circ}C$, so that it was adopted in conventional LCD-TV application.

  • PDF

The Characteristic Analysis and Design of Transformer for LCD Backlight Inverter (LCD 구동 Backlight Inverter용 변압기의 설계 방법과 특성 분석)

  • Kim, Youn-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.353-361
    • /
    • 2006
  • This paper presents the design scheme of transformer for backlight inverter and discuss the characteristics related to its design, including driving inverter. A few studies have so far been made at design and characteristics analysis of transformer. Therefore, this paper manages the presentation of the advisable design methodology of transformer for backlight inverter supplying CCFL. To verify the proposed method, this paper accomplishes the analysis by FEM coupled with circuit and finally shows that the proposed design method is very useful.

LCD BLU Defects Detection System with Sidelight (측면조명을 이용한 LCD 백라이트 불량검출 시스템)

  • Moon, Chang-Bae;Bark, Jee-Woong;Lee, Hae-Yeoun;Kim, Byeong-Man;Shin, Yoon-Sik
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.445-458
    • /
    • 2010
  • A Cold Cathode Fluorescent Lamp(CCFL) is used as a LCD Monitor's backlight widely. The most common way to check CCFL's defects is an examination with the naked eye. This naked eye examination can cause examination inconsistencies and industrial disasters. A shooting environment and detection algorithms are important for finding CCFL defects automatically. This paper presents CCFL defect detection algorithms using images captured under the shooting environment with sidelight which is one of the shooting environment we have suggested. The experimental result shows 4.65% of overdetection and 5.37% of unsuccessful defect detection of CCFL.

A Study on the Equivalent Model of an External Electrode Fluorescent Lamp Based on Equivalent Resistance and Capacitance Variation

  • Cho, Kyu-Min;Oh, Won-Sik;Moon, Gun-Woo;Park, Mun-Soo;Lee, Sang-Gil
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 2007
  • An External Electrode Fluorescent Lamp (EEFL) has longer lifespan, higher power efficiency and higher luminance than a Cold Cathode Fluorescent Lamp (CCFL). Moreover, it is easy to drive them in parallel. Therefore, the EEFL is expected to quickly replace the CCFL in LCD backlight systems. However, the EEFL has more complex characteristics than the CCFL with a resistive component, because it has both a resistive component by plasma and a capacitive component by external electrode. In this paper, values of resistance and capacitance are measured at several power levels and at several operating frequencies. They are expressed by a numeral formula based on a linear approximation that represents the equivalent resistance and capacitance as a function of power. Then we made block diagram of the equivalent circuit model using numerical expressions. Simulation waveforms and experimental results are presented to verify the feasibility of the equivalent model.

The circuit design of small size LCD backlight inverter (소형 TFT-LCD 백라이트 인버터회로 설계)

  • 정상수;김광태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2847-2850
    • /
    • 2003
  • A input voltage conversion dimming control formula and a PMW dimming control formula which have been used for dimming control of CCFL driving inverter in TFT-LCD backlight, are the existing facilities so far, however, in this thesis the circuit is designed by applying The rover inverter that are able to measure output brightness according to changing of duty ratio at PWM and voltage. consequently, it's able to be confirmed that we can have dimming control more detailed than before.

  • PDF

Measurement Method of a Parasitic Capacitance in LCD Backlight Inverter (LCD 인버터의 기생 용량 측정 방법)

  • Lee Jae-Kwang;Lee Kwang-Il;Yoon Seok;Kwon Gi-Hyun;Roh Chung-Wook;Han Sang-Kyoo;Hong Sung-Soo;SaKong Suk-Chin;Kim Jong-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.239-241
    • /
    • 2006
  • 본 논문에서는 Liquid crystal display (LCD) Backlight module중에 Cold cathode fluorescent lamp (CCFL)를 포함한 인버터가 가지고 있는 기생 용량 측정 방법을 고안하였다. CCFL의 부성 저항 특성을 고려하여 램프의 정적 저항 성분을 일정하게 유지시키고 입력 전압 대 출력 전압의 비 중 최대 Gain을 갖는 주파수를 찾아내 기생 용량을 계산하는 Algorithm을 완성하였다. 시뮬레이션과 실험 결과를 통해 비교 검증함으로써 측정 방법의 유효성을 입증하였다.

  • PDF