• Title/Summary/Keyword: LCC resonant converter

Search Result 22, Processing Time 0.02 seconds

The Design and Applications of LCC Resonant Converter (LCC 공진형 컨버터를 적용한 산업용 전원장치 응용연구)

  • Ahn, Suk-Ho;Jang, Sung-Roc;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.566-572
    • /
    • 2015
  • This study introduces an LCC resonant converter operating on a continuous conduction mode. The LCC resonant converter has the advantage of improving system efficiency, especially under the rated load condition, because it can reduce conduction loss by improving the resonance current shape and switching loss by increasing the lossless snubber capacitance. The proposed LCC resonant converter is applied to various applications, including a 60 kW EV fast charger, a 24 kJ/s high-voltage capacitor charger, and a 20 kV, 20 kW high-precision DC power supply. Experimental results prove that the proposed LCC resonant converter topology can be effectively used as a converter topology for these applications.

Design Method of High Efficiency Capacitor Charger Based on LCC Resonant Converter (LCC 공진형 컨버터 기반의 고효율 커패시터 충전기 설계기법)

  • Jeong, Song-Chan;Song, Seung-Ho;Choi, Min-Kyu;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • This study proposes a design method that minimizes a conduction loss of LCC resonant converter under rated condition. Through a simplified analysis of the waveform of the resonant current, the power transfer section and RMS value of the resonant current was analyzed mathematically and graphically. Based on this analysis, the design method that minimizes the RMS value of the resonant current is proposed. To demonstrate this method, this study designed a 7.5 kW (100 V, 75 A) capacitor charger based on LCC resonant converter and the design parameters were chosen according to the process of the design method. Then, the capacitor charger was implemented. An experiment was conducted to measure efficiency while satisfying design specifications under rated conditions. This design method was verified to be effective by achieving 97.7% maximum efficiency and design specifications under rated conditions.

A Characteristic Analysis of DC-DC Converter linked LCC type High Frequency Resonant Inverter (LCC형 고주파 공진 인버터 링크 DC-DC 컨버터의 특성해석)

  • Nam, Seung-Sik;Ro, Chae-Gyun;Lee, Dal-Hae;Seo, Cheol-Sik;Hwang, Gye-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2007-2009
    • /
    • 1997
  • This paper proposes the LCC type high frequency resonant DC-DC converter using Power MOSFET as switching devices, and describes the characteristics and operating principles. LCC converter has the resonant capacitor instead of a source decoupling capacitor in the conventional half bridge parallel resonant converter. We performed an experiment to prove the propriety of proposed converter.

  • PDF

A New CW CO2 Laser with Precise Output and Minimal Fluctuation by Adopting a High-frequency LCC Resonant Converter

  • Lee, Dong-Gil;Park, Seong-Wook;Yang, Yong-Su;Kim, Hee-Je;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.842-848
    • /
    • 2011
  • The current study proposes the design of a hybrid series-parallel resonant converter (SPRC) and a three-stage Cockcroft-Walton voltage multiplier for precisely adjusting the power generated by a continuous wave (CW) $CO_2$ laser. The design of a hybrid SPRC, called LCC resonant converter, is described, and the fundamental approximation of a high-voltage and high-frequency (HVHF) transformer with a resonant tank is discussed. The results of the current study show that the voltage drop and ripple of a three-stage Cockcroft-Walton voltage multiplier depend on frequency. The power generated by a CW $CO_2$ laser can be precisely adjusted by a variable-frequency controller using a DSP (TMS320F2812) microprocessor. The proposed LCC converter could be used to obtain a maximum laser output power of 23 W. Moreover, it could precisely adjust the laser output power within 4.3 to 23 W at an operating frequency range of 187.5 to 370 kHz. The maximum efficiency of the $CO_2$ laser system is approximately 16.5%, and the minimum ripple of output voltage is about 1.62%.

An improved LCLC Resonant Converter using Auxiliary winding of Resonant Inductor (공진 인덕터 보조권선을 이용한 개선된 LCLC 공진형 컨버터)

  • 백주원;이영식;정창용;조정구;김흥근
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.472-475
    • /
    • 1999
  • An improved series-parallel resonant converter using auxiliary winding of resonant is presented. The conventional series-parallel resonan converter and newly developed converter are compared for high voltage application. This proposed converter gives several merits such a wide load ranges, small circulating current, low peak voltage at no load. Two experimental results for the proposed converter and conventional one are presented for conventional LCC type converter and the proposed one.

  • PDF

A Study on the Characteristic of LCC and LLCC Parallel Resonant Inverter for Electronic Ballastic (전자안정기 구동용 LCC와 LLCC 병렬 공진형 인버터의 특성에 관한 연구)

  • 정주섭;차인수;최장균
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.31-34
    • /
    • 1996
  • A new analysis method is presented for the steady state response of electronic ballast circuit. Comparisons and examination among self exited LCC, LLCC resonant converter of electronic ballast for fluorescent lamp in expect of soft starting, component stress shot of are presented. In this paper, the theoretical discussions and analysis are verified by experimental measurements

  • PDF

Design of a Simmer Circuit for Xenon Flash Lamp Driver Based on a LCC Converter (LCC 컨버터 기반의 제논 플래시 램프 구동장치를 위한 시머회로 설계)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.231-232
    • /
    • 2017
  • This paper describes the design and implementation of a 2.5kW (500V, 5A) simmer circuit that maintains the ionization of xenon gas inside the lamp. The design is based on a LCC resonant converter in continuous conduction mode (CCM) with above resonant frequency to take advantage of high power density from using parasitic elements such as the leakage inductance in a power transformer. In addition, since the converter has current source output characteristics, it is suitable for maintaining ionization of the lamp having the negative resistance load characteristic. To verify this converter design, PSpice modeling was performed. Finally, the developed simmer circuit is verified by a resistive load of rated performance and the Ionization maintenance operation of the xenon flash lamp.

  • PDF

Operating Characteristics in LCLC Resonant Converter with A Low Coupling Transformer. (낮은 커플링 변압기를 갖는 LCLC 공진컨버터 동작특성)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan;Cho Jung-Goo;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.343-350
    • /
    • 2005
  • Conventionally, for transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system. However, the high frequency series resonant converter has the disadvantages such as the low efficiency, the high voltage gain characteristics and deviation of the phase angle in the overall load range. To improve this disadvantages, In this paper, the characteristics of the high efficiency and unit voltage gain as well as in-phase are revealed in the proposed three-level LCLC (Inductor-Capacitor- Inductor-Capacitor) resonant converter. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental Prototype.

Design of 9 kJ/s High Voltage LiPo Battery based 2-stage Capacitor Charger (배터리 기반 2단 충전 9 kJ/s 고전압 충전기 설계)

  • Cho, Chan-Gi;Jia, Ziyi;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.268-272
    • /
    • 2019
  • A lithium polymer battery-based 9 kJ/s high-voltage capacitor charger, which comprises two stages, is proposed. A modified LCC resonant converter and resonant circuit are introduced at the first and second stages, respectively. In the first stage, the methods for handling low-voltage and high-current batteries are considered. Delta-wye three-phase transformers are used to generate a high output voltage through the difference between the phase and line-to-line voltages. Another method is placing the series resonant capacitor of the LCC resonant components on the transformer secondary side, which conducts considerably low current compared with the transformer primary side. On the basis of the stable operation of the first charging stage, the secondary charging stage generates final output voltage by using the resonance. This additional stage protects the rectifying diodes from the negative voltage when the output capacitor is discharged for a short time. The inductance and capacitance of the resonance components are selected by considering the resonance charging time. The design procedure for each stage with the aforementioned features is suggested, and its performance is verified by not only simulation but also experimental results.

A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System (비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구)

  • Kim, Dong-Hee;Hwang, Gye-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.55-64
    • /
    • 2007
  • This paper represents characteristics and design example of series loaded LCC type high frequency resonant DC-DC converter with variable parallel capacitor in the secondary side of inductive power transformer. In this converter, ZVS(zero voltage switching) technique is applied to reduce turn-off switching losses, and the applied converter used the PFM switching pattern to control output voltage. The operating characteristics of the proposed converter is analyzed using nomalized parameter such as switching frequency and load factor with varing the secondary parallel resonant capacitor. The results of analysis show the operating characteristics and design method of the proposed converter using characteristic values. And the proposed converter can be applied for the contactless power supply with linear transfer system such as dean room facilities of semiconductor and Flat Panel Display.