• Title/Summary/Keyword: LCC Analysis

Search Result 374, Processing Time 0.041 seconds

A study on the improvement in decision making analysis for the selection of tunnel construction method (터널건설공법 선정을 위한 의사결정기법의 개선방안 연구)

  • Park, Jun-Kyung;Jun, Sung-Kwon;Kim, Young-Keun;Heo, Eun-Nyeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.261-276
    • /
    • 2002
  • Recently, for the purpose of choosing reasonable and economical construction, the decision making analyses, such as VE (Value Engineering) and LCC (Life Cycle Cost), are generally performed. But, these methods have some limitations for the application to subway tunnel construction method. So, the AHP (Analytical Hierarchy Process) analysis is applied to determine relative importance for obtaining objectivity in quantitative analysis. And, the LCSC (Life Cycle Social Cost) method is developed to account for the social loss and risk by tunnel construction. From the case of the subway ${\bigcirc}{\bigcirc}$ lot, those methods are very useful to decision making analysis. And, in that case, both quantitative and quantitative analysis appraisement, the drilling and blasting method is evaluated useful alternative proposal in comparing with the cut and cover method.

  • PDF

Economic Analysis of Heat Pump System through Actual Operation (히트 펌프 냉난방 시스템의 실사용을 통한 경제성 분석)

  • Shin, Gyu-Won;Kim, Gil-Tae;Joo, Ho-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.921-926
    • /
    • 2006
  • The present study has been conducted economic analysis through actual operation of EHP and GHP which are installed at the same building of an university Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze LCC and economical efficiency is compared. The initial cost is considered on the basis of actual costs, and annual energy cost is converted into the cost after measuring electricity and gas consumption a day. LCC applied present value method is used to assess economical efficiency of both them. Variables used to LCC analysis are electricity cost escalation rate, natural gas cost escalation rate, interest rate, and service lives and when each of them are 4%, 2%, 8%, and 20 years, results of analysis short that EHP(148,257,306 won) is 8.05%(12,981,990 won) more profitable than GHP(161,239,295 won).

  • PDF

Development of System and Cost Function Model for Life Cycle Cost Analysis of Bridge (교량의 생애주기비용 분석을 위한 비용함수 모델 및 시스템 개발)

  • Park Mi-Yun;Sun Jong-Wan;Eom In-Soo;Cho Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.704-711
    • /
    • 2005
  • Recently Life Cycle Cost Analysis for civil infrastructures such as pavements, bridges, and dams has been emphasized However, so far, there are few systems available for life cycle cost analysis of bridges at design stage. Therefore, the objective of this paper is to develop a user-friendly life-cycle cost analysis system for LCC-effective optimal design decision making at design stage. The program is based on the proposed LCC model, formulation, analysis modules and systematic procedure that suit Korean construction conditions. It is expected that the developed system can be effectively utilized for more LCC-effective design of bridges. It is applied to an actual bridge design project in order to demonstrate its effectiveness and applicability.

  • PDF

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

Impact of nuclear and renewable energy sources on environment quality: Testing the EKC and LCC hypotheses for South Korea

  • Ugur Korkut Pata;Mustafa Tevfik Kartal
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.587-594
    • /
    • 2023
  • This study investigates the impacts of nuclear energy consumption on environmental quality from a different perspective by focusing on carbon dioxide (CO2) emissions, ecological footprint, and load capacity factor. In this context, the South Korea case, which is a leading country producing and consuming nuclear energy, is investigated by considering also economic growth, and the 1997 Asian crisis from 1977 to 2018. To this end, the study employs the autoregressive distributed lag (ARDL) approach. Different from previous literature, this study proposes a load capacity curve (LCC) and tests the LCC and environmental Kuznets curve (EKC) hypotheses simultaneously. The analysis results reveal that (i) the LCC and EKC hypotheses are valid in South Korea; (ii) nuclear energy has an improving effect on the environmental quality; (iii) renewable energy does not have a significant long-term impact on the environment; (iv) the 1997 Asian crisis had an increasing effect on the load capacity factor; (v) South Korea has not yet reached the turning point, identified as $55,411, where per capita income improves environmental quality. Overall, the results show the validity of the LCC and EKC hypotheses and prove the positive contribution of nuclear energy to South Korea's green development strategies.

A Sludge Collector Selection Model by Life Cycle Cost Analysis (LCC분석에 의한 슬러지수집기 선정 모델)

  • Lee, Seung-Hoon;Woo, Yu-Mi;Lee, Sung-Rak;Koo, Kyo-Jin;Hyun, Chang-Taek;Hong, Tae-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.6
    • /
    • pp.175-184
    • /
    • 2006
  • This study focused on developing Life Cycle Cost(LCC) analysis model for selecting sludge collectors in wastewater treatment system and applying the model to a case study. Cost items are examined through literature review and historical data of a facility. Analysis period, discount rate, energy cost escalation ratio are assumed to reasonable level. Monetary evaluation is performed using historical data and estimations from vendors. Sensitive analysis is executed using Monte Carlo Simulation for assumed factors. Interviews with operators, vendors, constructors, managers are conducted to define factors which indicates ease of maintenance, ease of delivery, technical performance, efficiency, environmental friendship. Factors are representing technical and social factors. Results from LCC analysis and qualitative analysis are evaluate together with Weighted Matrix Evaluation Methods for optimum alternative of sludge collectors.

Analyzing the LCC Network at Asian Major Airports (아시아 주요공항의 저비용항공사 네트워크 분석)

  • BAE, Hyeon Jun;PARK, Yonghwa;KIM, Young In
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.247-259
    • /
    • 2017
  • This study analyzed the network of low cost carriers (LCCs) to investigate the structural characteristics of airport networks. 71 LCCs in Asian major airports from January 2010 to January 2016 were queried from the SRS Analyzer Schedule Database of IATA's Airport Intelligence Service, and analyzed international routes excluding domestic flights. We analyzed the network connection mechanism focusing on Incheon International Airport, Hong Kong, Singapore, Narita, Kansai, Pudong, Kaohsiung, Gimpo and Jeju airports as well as structural changes in the LCC network using four centrality analysis concepts. The outcomes showed that the LCC network is formed in these airports and the density of connectivity to other airports increased. In recent years, LCC has launched LCCs-Alliances and would be considered to operate a hub-and-spoke network.

A Study on the Establishment of Long-Distance Route Network of Full Service Carrier and Long-Distance LCC - Focused on Malaysia Airlines and AirAsia X (대형항공사와 장거리 LCC의 장거리 노선 네트워크 구축에 관한 연구 - 말레이시아 항공과 AirAsia X를 중심으로)

  • Choi, Doo-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.165-173
    • /
    • 2021
  • The purpose of this study was to provide directions to help enter and expand long-distance routes by analyzing the characteristics of AirAsia X's network construction with Malaysia Airlines. To this end, long-distance route data was extracted from the OAG Schedule Analyzer and the network was analyzed on a two-period basis using SNA. Since AirAsia X's entry into long-range routes, Malaysia Airlines has steadily reduced its routes across the entire region. On the other hand, it is analyzed that AirAsia X is building an expanded network by increasing its network in Northeast Asia instead of ultra-long range routes. Studies have shown that LCCs also have potential growth in the long-distance route market of less than 7,000 km. The results of this study may help LCC establish a long-distance market entry and network deployment strategy.

INTEGRATED LIFE-CYCLE COST ANALYSIS CONSIDERING ENVIRONMENTAL COSTS: A HIGHWAY PROJECT CASE

  • Woo-Sik Jang;Heedae Park;Sungmin Kim;Seung Heon Han;Jong Seo Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.273-279
    • /
    • 2011
  • Concerns over the environment have spawned a number of research studies in the construction industry, as the construction of built environments and large infrastructures involves diverse environmental impacts and loads of hazardous emissions. Many researchers have attempted to quantify these environmental loads, including greenhouse gases, carbon dioxide, nitrogen dioxide, and sulfur dioxide, to name a few. However, little research has been conducted regarding integrating the life-cycle assessment (LCA) of environmental loads with the current life-cycle cost analysis (LCCA) approach. This study aims to estimate the environmental loads as a monetary value using the European Climate Exchange (ECX) rate and, then, to integrate those impacts with the pure construction cost. Toward this end, this study suggests an integrated approach that takes into account the environmental effect on the evaluation of the life-cycle cost (LCC). The bill of quantity (BOQ) data of a real highway project are collected and analyzed for this purpose. As a result, considering the environmental loads in the pavement process, the total LCC increased 16% from the traditional LCC cost. This study suggests an integrated approach that will account the environmental effect on the LCC. Additionally, this study is expected to contribute to better decision-making, from the perspective of more sustainable development, for government as well as for contractors.

  • PDF

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.