DOI QR코드

DOI QR Code

Impact of nuclear and renewable energy sources on environment quality: Testing the EKC and LCC hypotheses for South Korea

  • Ugur Korkut Pata (Faculty of Economics and Administrative Sciences, Department of Economics, Osmaniye Korkut Ata University) ;
  • Mustafa Tevfik Kartal (Borsa Istanbul Strategic Planning, Financial Reporting, and Investor Relations Directorate)
  • Received : 2022.08.17
  • Accepted : 2022.10.21
  • Published : 2023.02.25

Abstract

This study investigates the impacts of nuclear energy consumption on environmental quality from a different perspective by focusing on carbon dioxide (CO2) emissions, ecological footprint, and load capacity factor. In this context, the South Korea case, which is a leading country producing and consuming nuclear energy, is investigated by considering also economic growth, and the 1997 Asian crisis from 1977 to 2018. To this end, the study employs the autoregressive distributed lag (ARDL) approach. Different from previous literature, this study proposes a load capacity curve (LCC) and tests the LCC and environmental Kuznets curve (EKC) hypotheses simultaneously. The analysis results reveal that (i) the LCC and EKC hypotheses are valid in South Korea; (ii) nuclear energy has an improving effect on the environmental quality; (iii) renewable energy does not have a significant long-term impact on the environment; (iv) the 1997 Asian crisis had an increasing effect on the load capacity factor; (v) South Korea has not yet reached the turning point, identified as $55,411, where per capita income improves environmental quality. Overall, the results show the validity of the LCC and EKC hypotheses and prove the positive contribution of nuclear energy to South Korea's green development strategies.

Keywords

References

  1. Z. Zhan, L. Ali, S. Sarwat, D.I. Godil, G. Dinca, M.K. Anser, A step towards environmental mitigation: do tourism, renewable energy and institutions really matter? A qardl approach, Sci. Total Environ. 778 (2021), 146209, https://doi.org/10.1016/j.scitotenv.2021.146209. 
  2. Y. Cheng, X. Yao, Carbon intensity reduction assessment of renewable energy technology innovation in China: a panel data model with cross-section dependence and slope heterogeneity, Renew. Sustain. Energy Rev. 135 (2021), 110157, https://doi.org/10.1016/j.rser.2020.110157. 
  3. M.T. Kartal, The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries, Renew. Energy 184 (2022) 871-880, https://doi.org/10.1016/j.renene.2021.12.022. 
  4. G.M. Grossman, A.B. Krueger, Environmental Impacts of a North American Free Trade Agreement, (No. W3914) National Bureau of Economic Research, 1991. 
  5. R. Siche, L. Pereira, F. Agostinho, E. Ortega, Convergence of ecological footprint and emergy analysis as A sustainability indicator of countries: Peru as case study, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3182-3192, https://doi.org/10.1016/j.cnsns.2009.10.027. 
  6. U.K. Pata, Do renewable energy and health expenditures improve load capacity factorin the USA and Japan? A new approach to environmentalissues, Eur. J. Health Econ. 22 (2021) 1427-1439, https://doi.org/10.1007/s10198-021-01321-0. 
  7. Z. Fareed, S. Salem, T.S. Adebayo, U.K. Pata, F. Shahzad, Role of export diversification and renewable energy on the load capacity factor in Indonesia: a Fourier quantile causality approach, Front. Environ. Sci. 9 (2021), 770152, https://doi.org/10.3389/fenvs.2021.770152. 
  8. U.K. Pata, A. Samour, Do renewable and nuclear energy enhance environmental quality in France? A new EKC approach with the load capacity factor, Prog. Nucl. Energy 149 (2022), 104249, https://doi.org/10.1016/j.pnucene.2022.104249. 
  9. G. Dantas, B. Siciliano, B.B. Franca, C.M. da Silva, G. Arbilla, The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil, Sci. Total Environ. 729 (2020), 139085, https://doi.org/10.1016/j.scitotenv.2020.139085. 
  10. U.K. Pata, How is COVID-19 affecting environmental pollution in US cities? Evidence from asymmetric Fourier causality test, Air Quality, Atmosphere & Health 13 (2020) 1149-1155, https://doi.org/10.1007/s11869-020-00877-9. 
  11. C. Ghenai, M. Bettayeb, Data analysis of the electricity generation mix for clean energy transition during COVID-19 lockdowns, Energy Sources, Part A Recovery, Util. Environ. Eff. (2021), https://doi.org/10.1080/15567036.2021.1884772. 
  12. IEA, Nuclear Power and Secure Energy Transitions, 2022. https://www.iea.org/reports/nuclear-power-and-secure-energy-transitions. (Accessed 30 July 2022). 
  13. B. Pan, T.S. Adebayo, R.L. Ibrahim, M.A.S. Al-Faryan, Does Nuclear Energy Consumption Mitigate Carbon Emissions in Leading Countries by Nuclear Power Consumption? Evidence from Quantile Causality Approach, Energy & Environment, 2022, 0958305X221112910, https://doi.org/10.1177/0958305X221112910. 
  14. BP, Energy data. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html, 2022. (Accessed 7 August 2022). 
  15. B. Ozcan Danish, R. Ulucak, An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: bridging IPAT and EKC hypotheses, Nucl. Eng. Technol. 53 (2021) 2056-2065, https://doi.org/10.1016/j.net.2020.12.008. 
  16. Global Footprint Network, Country Trends, 2022. https://data.footprintnetwork.org/#/countryTrends?type=BCpc,EFCpc&cn=117. (Accessed 30 July 2022). 
  17. T. Abdulmagid Basheer Agila, W. Khalifa, S. Saint Akadiri, T.S. Adebayo, M. Altuntas, Determinants of load capacity factor in South Korea: does structural change matter? Environ. Sci. Pollut. Control Ser. (2022) https://doi.org/10.1007/s11356-022-20676-2. 
  18. M.T. Kartal, U. Ali, Z. Nurgazina, Asymmetric Effect of Electricity Consumption on CO2 Emissions in the USA: Analysis of End-User Electricity Consumption by Nonlinear Quantile Approaches, Environmental Science and Pollution Research, 2022, https://doi.org/10.1007/s11356-022-21715-8. 
  19. Z. Ahmed, M.W. Zafar, S. Ali, Linking urbanization, human capital, and the ecological footprint in G7 countries: an empirical analysis, Sustain. Cities Soc. 55 (2020), 102064, https://doi.org/10.1016/j.scs.2020.102064. 
  20. U.K. Pata, C. Isik, Determinants of the load capacity factor in China: a novel dynamic ARDL approach for ecological footprint accounting, Resour. Pol. 74 (2021), 102313, https://doi.org/10.1016/j.resourpol.2021.102313. 
  21. A.A. Awosusi, K. Kutlay, M. Altuntas, B. Khodjiev, E.B. Agyekum, M. Shouran, M. Elgbaily, S. Kamel, A roadmap toward achieving sustainable environment: evaluating the impact of technological innovation and globalization on load capacity factor, Int. J. Environ. Res. Publ. Health 19 (2022) 3288, https://doi.org/10.3390/ijerph19063288. 
  22. U.K. Pata, D. Balsalobre-Lorente, Exploring the impact of tourism and energy consumption on the load capacity factor in Turkey: a novel dynamic ARDL approach, Environ. Sci. Pollut. Control Ser. 29 (2022) 13491-13503, https://doi.org/10.1007/s11356-021-16675-4. 
  23. Y. Shang, A. Razzaq, S. Chupradit, N.B. An, Z. Abdul-Samad, The role of renewable energy consumption and health expenditures in improving load capacity factor in ASEAN countries: exploring new paradigm using advance panel models, Renew. Energy 191 (2022) 715-722, https://doi.org/10.1016/j.renene.2022.04.013. 
  24. D. Xu, S. Salem, A.A. Awosusi, G. Abdurakhmanova, M. Altuntas, D. Oluwajana, D. Kirikkaleli, O. Ojekemi, Load capacity factor and financial globalization in Brazil: the role of renewable energy and urbanization, Front. Environ. Sci. 9 (2022), 823185, https://doi.org/10.3389/fenvs.2021.823185. 
  25. T.S. Adebayo, Renewable energy consumption and environmental sustainability in Canada: does political stability make a difference? Environ. Sci. Pollut. Control Ser. (2022) https://doi.org/10.1007/s11356-022-20008-4. 
  26. F. Chien, C.C. Hsu, I. Ozturk, A. Sharif, M. Sadiq, The role of renewable energy and urbanization towards greenhouse gas emission in top asian countries: evidence from advance panel estimations, Renew. Energy 186 (2022) 207-216, https://doi.org/10.1016/j.renene.2021.12.118. 
  27. U.K. Pata, Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with A structural break, Environ. Sci. Pollut. Control Ser. 28 (2021) 846-861, https://doi.org/10.1007/s11356-020-10446-3. 
  28. M.T. Kartal, S. Kilic Depren, F. Ayhan, O. Depren, Impact of Renewable and Fossil Fuel Energy Consumption on Environmental Degradation: Evidence from USA by Nonlinear Approaches, International Journal of Sustainable Development & World Ecology, 2021, https://doi.org/10.1080/13504509.2022.2087115. 
  29. U. Al-Mulali, B. Saboori, I. Ozturk, Investigating the environmental Kuznets curve hypothesis in Vietnam, Energy Pol. 76 (2015) 123-131, https://doi.org/10.1016/j.enpol.2014.11.019. 
  30. S.P. Nathaniel, N. Adeleye, F.F. Adedoyin, Natural resource abundance, renewable energy, and ecological footprint linkage in MENA countries, Estud. Econ. Apl. 39 (2021) 1-31, https://doi.org/10.25115/EEA.V39I2.3927. 
  31. U.K. Pata, A.E. Caglar, Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: evidence from augmented ARDL approach with a structural break, Energy 216 (2021), 119220, https://doi.org/10.1016/j.energy.2020.119220. 
  32. K. Dong, R. Sun, H. Jiang, X. Zeng, CO2 emissions, economic growth, and the environmental Kuznets curve in China: what roles can nuclear energy and renewable energy play? J. Clean. Prod. 196 (2018) 51-63, https://doi.org/10.1016/j.jclepro.2018.05.271. 
  33. M.T. Majeed, I. Ozturk, I. Samreen, T. Luni, Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan, Nucl. Eng. Technol. 54 (2022) 1664-1673, https://doi.org/10.1016/j.net.2021.11.021. 
  34. M. Sadiq, R. Shinwari, M. Usman, I. Ozturk, A.I. Maghyereh, Linking nuclear energy, human development and carbon emission in BRICS region: do external debt and financial globalization protect the environment? Nucl. Eng. Technol. 54 (2022) 3299-3309, https://doi.org/10.1016/j.net.2022.03.024. 
  35. M. Shahbaz, A. Sinha, Environmental Kuznets curve for CO2 emissions: a literature survey, J. Econ. Stud. 46 (2019) 106-168, https://doi.org/10.1108/JES-09-2017-0249. 
  36. Our World in Data, 2022. https://ourworldindata.org/energy. (Accessed 1 August 2022). 
  37. World Bank, World Development Indicators, 2022. https://data.worldbank.org/indicator/NY.GDP.PCAP.KD?locations=KR. (Accessed 1 August 2022). 
  38. N. Mahmood, Z. Wang, B. Zhang, The role of nuclear energy in the correction of environmental pollution: evidence from Pakistan, Nucl. Eng. Technol. 52 (2020) 1327-1333, https://doi.org/10.1016/j.net.2019.11.027. 
  39. U.K. Pata, Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks, J. Clean. Prod. 187 (2018) 770-779, https://doi.org/10.1016/j.jclepro.2018.03.236. 
  40. M.H. Pesaran, Y. Shin, R.J. Smith, Bounds testing approaches to the analysis of level relationships, J. Appl. Econom. 16 (2001) 289-326, https://doi.org/10.1002/jae.616. 
  41. C. Bayer, C. Hanck, Combining non-cointegration tests, J. Time Anal. 34 (2013) 83-95, https://doi.org/10.1111/j.1467-9892.2012.00814.x. 
  42. R.F. Engle, C.W. Granger, Co-integration and error correction: representation, estimation, and testing, Econometrica: J. Econom. Soc. 55 (1987) 251-276, https://doi.org/10.2307/1913236. 
  43. S. Johansen, Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica: J. Econom. Soc. 59 (1991) 1551-1580, https://doi.org/10.2307/2938278. 
  44. H.P. Boswijk, Testing for an unstable root in conditional and structural error correction models, J. Econom. 63 (1994) 37-60, https://doi.org/10.1016/0304-4076(93)01560-9. 
  45. A. Banerjee, J. Dolado, R. Mestre, Error-correction mechanism tests for cointegration in a single-equation framework, J. Time Anal. 19 (1998) 267-283, https://doi.org/10.1111/1467-9892.00091. 
  46. R.A. Fisher, Statistical methods for research workers, in: Breakthroughs in Statistics, Springer, New York, 1932. 
  47. P.C. Phillips, P. Perron, Testing for a unit root in time series regression, Biometrika 75 (1988) 335-346, https://doi.org/10.1093/biomet/75.2.335. 
  48. G. Elliot, T. Rothenberg, J. Stock, Efficient tests for an autoregressive unit root, Econometrica 64 (1996) 813-836, https://doi.org/10.2307/2171846. 
  49. P.K. Narayan, The saving and investment nexus for China: evidence from cointegration tests, Appl. Econ. 37 (2005) 1979-1990, https://doi.org/10.1080/00036840500278103. 
  50. U.K. Pata, Environmental Kuznets curve and trade openness in Turkey: bootstrap ARDL approach with a structural break, Environ. Sci. Pollut. Control Ser. 26 (2019) 20264-20276, https://doi.org/10.1007/s11356-019-05266-z. 
  51. J. Baek, A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries, Appl. Energy 145 (2015) 133-138, https://doi.org/10.1016/j.apenergy.2015.01.074. 
  52. H. Iwata, K. Okada, S. Samreth, Empirical study on the environmental Kuznets curve for CO2 in France: the role of nuclear energy, Energy Pol. 38 (2010) 4057-4063, https://doi.org/10.1016/j.enpol.2010.03.031. 
  53. L.S. Lau, C.K. Choong, C.F. Ng, F.M. Liew, S.L. Ching, Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries, Econ. Modell. 77 (2019) 12-20, https://doi.org/10.1016/j.econmod.2018.09.015. 
  54. World Bank, Renewable Energy Consumption (% of Total Final Energy Consumption) - Korea, Rep., 2022. https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS?locations=KR. (Accessed 6 August 2022). 
  55. S. Koc, G.C. Bulus, Testing validity of the EKC hypothesis in South Korea: role of renewable energy and trade openness, Environ. Sci. Pollut. Control Ser. 27 (2020) 29043-29054, https://doi.org/10.1007/s11356-020-09172-7. 
  56. S. Kim, H. Lee, H. Kim, D.H. Jang, H.J. Kim, J. Hur, Y.S. Cho, K. Hur, Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea, Renew. Sustain. Energy Rev. 98 (2018) 150-162, https://doi.org/10.1016/j.rser.2018.09.013. 
  57. Abdul Rehman, Mohammad Mahtab Alam, Ilhan Ozturk, Rafael Alvarado, Muntasir Murshed, Cem Isik, Hengyun Ma, Globalization and renewable energy use:how are they contributing to upsurge the CO2 emissions? A global perspective, Environ. Sci. Pollut. Res. (2022), https://doi.org/10.1007/s11356-022-22775-6. 
  58. Muntasir Murshed, Behnaz Saboori, Mara Madaleno, Hong Wang, Buhari Dogan, Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries, Renew. Energy 190 (2022) 664-674, https://doi.org/10.1016/j.renene.2022.03.121. 
  59. Solomon Prince Nathaniel, M.D. Alam, Muntasir Murshed, Haider Mahmood, Paiman Ahmad, The roles of nuclear energy, renewable energy, and economic growth in the abatement of carbon dioxide emissions in the G7 countries, Environ. Sci. Pollut. Res. 28 (2022) 47957-47972, https://doi.org/10.1007/s11356-021-13728-6. 
  60. R.L. Brown, J. Durbin, J.M. Evans, Techniques for testing the constancy of regression relationships over time, J. Roy. Stat. Soc. B 37 (1975) 149-163, https://doi.org/10.1111/j.2517-6161.1975.tb01532.x. 
  61. P. Turner, Power properties of the CUSUM and CUSUMSQ tests for parameter instability, Appl. Econ. Lett. (11) (2010) 1049-1053, https://doi.org/10.1080/00036840902817474.