• Title/Summary/Keyword: LCC

Search Result 687, Processing Time 0.032 seconds

A Plan for Establishing IOT-based Building Maintenance Platform (S-LCC): Focusing a Concept Model on the Function Configuration and Practical Use of Measurement Data (IOT 기반 건축물 유지관리 플랫폼 구축(S-LCC) 방안 : 기능구성과 계측 데이터 활용을 위한 개념 모델을 중심으로)

  • Park, Tae-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.611-618
    • /
    • 2020
  • The reliability of the results of LCC analysis is determined by accurate analytical procedures and energy data from which the uncertainty is removed. Until now, systems that can automatically measure these energy data and produce databases have not been commercialized. Therefore this paper proposes a concept model of an S-LCC platform that can automatically collect and analyze electric energy consumption data of equipment systems using the IOT, which is the core tool in the Fourth Industrial Revolution and operates the equipment system efficiently using the analyzed results. The proposed concept model was developed by the convergence of existing BLCS and IOT and was comprised of five modules: Facility Control Module, LCC Analysis Module, Energy Consumption Control Module, Efficiency Analysis Module, and Maintenance Standard Reestablishment Module. Using the results of LCC analysis deduced from this system, the deterioration condition of an equipment system can be identified in real-time. The results can be used as the baseline data to re-establish standards for the maintenance factor, replacement frequency, and lifetime of existing equipment, and establish new maintenance standards for new equipment. If the S-LCC platform is established, it would increase the reliability of LCC analysis, reduce the labor force for entering data and improve accuracy, and would also change disregarded data into big data with high potential.

Repair LCC Evaluation of RC Structures through the FEM Analysis of Chloride Ion Penetration (염소이온 침투 FEM 해석을 통한 RC구조물의 보수 LCC 평가)

  • Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.223-230
    • /
    • 2006
  • In this paper the method for repair LCC evaluation of reinforced concrete structures deteriorated by chloride attack was constructed. Also, the FEM analysis for chloride ion penetration into concrete was conducted to evaluate the repair LCC which was decided by the number of repair times including early stages of construction and repair construction during the service life of structures. As a result, the number of repair times is obtained from the comparing the concentration of the chloride ion in a rebar position, and the critical chloride ion concentration of rebar corrosion through the FEM analysis considering the kind of repair materials and methods. Also, the repair LCC could be calculated by the number of repair times during the service life of structures.

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF

A Life Cycle Cost Model and Procedure for the Acquisition of Rolling Stocks (철도차량 획득을 위한 수명주기비용 모형 및 적용 절차)

  • Kim, Jong-Woon;Chung, Kwang-Woo;Park, Jun-Seo;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 2010
  • Operation and maintenance cost of a rolling stock is generally higher than its acquisition cost. Therefore, it is necessary for reducing life cycle cost (LCC) to make rolling stocks easy and low costly for operation and maintenance. In addition, their operation and maintenance support systems should be effective and efficient. To accomplish this, operator should specify LCC requirements in the early stage of acquisition and make a contractor to provide the rolling stocks of low LCC. This article presents a procedure and a verifiable LCC model available in the general acquisition process where an operator specify requirements and a contractor provide the rolling stock meeting the requirements.

Life-Cycle Cost Optimization of Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost(LCC) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost and expected retrofit costs for strength, deflection and crack. To demonstrate the cost effectiveness of LCC design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to mote rational, economical and safer design.

VE/LCC Analysis Models of Breakwaters by Fuzzy Reliability Approach (퍼지 신뢰성 이론에 의한 방파제의 VE/LCC 분석모델)

  • Ahn, Jong-Pil;Park, Ju-Won;Yu, Deog-Chan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • In this study, the concepts of integrated VE analysis assessment is introduced in order to achieve "Design for Deterioration performance" in design VE phase. For this purpose, a framework for fuzzy reliability based LCC and value analysis model using fuzzy logic based approach for breakwaters Projects is suggested. It is anticipated that the methodology Proposed in this paper can also be utilized in the design and maintenance phase of other facilities where decision making is made for the fuzzy reliability based life cycle cost and value analysis.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

A Study on the Improvement of Bridge Maintenance and Operation Level Using Life-Cycle Cost Analysis (LCC분석을 통한 교량 유지관리수준의 개선에 관한 연구)

  • Chun yong-Hyun;Lee Young-Dae;Park Hyeok;Kim Sung-Hwan;Kim Sa-Myung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.266-269
    • /
    • 2003
  • This study predicts the maintenance and operation level of the bridge based on the LCC concept. In order to predict the LCC of the given case, suggested the maintenance and operation level after reviewing other related materials. Apply the real information of the maintenance and operation to the three casesof the maintenance and operation level (real, current, and prevented maintenance and operation level). And based on such analytical measures, maintenance and operation costs and LCC in maintenance and operation level, have been predicted: therefore, suggests the basic information about maintenance and operation level for the bridge. With a result of this study, we could obtain (1)the LCC of PSC-bridge and RC-bridge is more economy than Steel-bridge and (2)more active maintenance and operation of a bridge is absolutely necessary.

  • PDF

A Study on the Selection of the Optimum Railroad Line using VE-LCC Analysis (VE-LCC 분석을 통한 철도의 최적노선 선정방안 연구)

  • Shin Tae-Kyun;Son Seok-Ku;Lee Seung-Hoon;Koo Kyo-Jin;Hyun Chang-Taek
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Selecting a railroad line requires the comparative evaluation of various elements. As a systematic approach to this selection it will be necessary to apply the VE study and the LCC analysis. This study proposes a methodology for selecting the optimum line of the ralroad using VE-LCC analysis. The VE study is performed by following four steps : Information analysis, Function analysis, Alternative evaluation, and Optimum plan selection. The economics evaluation in VE study is using LCC analysis and Sensitivity analysis. Cost items in LCC analysis are classified into bridge, tunnel, rail, and earthwork. We could select the optimum alte-rnatives considering not only cost elements hut also various evaluation element in VE-LCC analysis. The synthetic evaluation process of relative value composition and weighted matrix evaluation

  • PDF