• Title/Summary/Keyword: LC model

Search Result 239, Processing Time 0.034 seconds

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Toxicity of PFCs in Embryos of the Oryzias latipes Using Flow though Exposure System (유수식 연속노출장비를 이용한 과불화화합물(PFOS, PFOA)이 송사리 (Oryzias latipes) 알의 초기발생과정에 미치는 영향 연구)

  • Cho, Jae-Gu;Kim, Kyung-Tae;Ryu, Tae-Kwon;Park, Yu-Ri;Yoon, Jun-Heon;Lee, Chul-Woo;Kim, Hyun-Mi;Choi, Kyung-Hee;Jung, Ki-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • Perfluorinated chemicals (PFCs) is a kinds of persistent organic pollutants, and have the potential toxicity of which is causing great concern. In this study, we employed Oryzias latipes embryos to investigate the developmental toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)s compound using flowthrow system for 14 day. O. latipes embryos were exposed to solvent control, 20, 40 and 80 mg/L of PFOS and 62.5, 130, 260 mg/L of PFOA respectively. After exposure, hatchability, mortality, total length and heart beats were examined. Hatching rates were reduced approximately 27% in the 80 mg/L PFOS-treated group and 17% in the 62.5, 130 mg/L PFOA-treated groups. Heart beats in the PFOS-treated groups were reduced at 7 day but, PFOA-treated groups were increased heart beats. 80 mg/L PFOS treated group showed significant reduction in growth (total length) level to 90% of control. But PFOA did not showed significant effect on growth. In the 14 days $LC_{50}$ of PFOS and PFOA was 22.74 mg/L and 173 mg/L, respectively. The overall results indicated that the early stage of O. latipes might be a reliable model for the testing of developmental toxicity to perfluorinated chemicals.

Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • We investigated the anxiolytic-like activity of ${\alpha}$-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.

A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

  • Choi, Sang-Woon;Tammen, Stephanie A;Liu, Zhenhua;Friso, Simonetta
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.358-363
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS: We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS: The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS: In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns.

Tyronase Inhibitory Effect of 3,4-Dihydroxybenzaldehyde Isolated from Pinellia ternata (반하에서 3,4-Dihydroxybenzaldehyde의 분리, 구조동정 및 Tyrosinase 활성 저해효과)

  • Shin, Dong-Soo;Paik, Do-Hyeon;Yoon, Do-Young;Shin, Dong-Min;Cho, Yong-Kweon
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • Objectives : The purpose of this study is to isolate tyrosinase inhibitory material from Pinellia ternata and characterize its own structure and activity. Methods : Pinellia ternata (600g) was extracted with 95% methanol (1L) at $37^{\circ}C$ for 4 days, with shaking at 250rpm. The extract was further solvent-fractionated with n-hexane, chloroform, ethylacetate and water. The active fraction was subjected to JAI recycling prep-HPLC JAIGEL GS-320 column. The structure was identified for the active peak with NMR and GC. Results : Tyrosinase was potently inhibited by 95% methanol extracts from Pinellia ternata. The $IC_{50}$ value of the extracts was estimated to be 0.05mg/ml. The extracts was divided into four solvent-fractions, and the most potent tyrosinase inhibition was found in ethylacetate layer. $IC_{50}$ value of ethylacetate fraction was 0.001mg/ml. This fraction was further purified with JAI Recycling Preparative HPLC (Model: LC 9104). The isolated compound showing inhibitory activity was characterized on its chemical structure by NMR and the compound was identified as 3,4-dihydroxybenzaldehyde. $IC_{50}$ was found to be 7.74 ${\mu}M$ which is much lower than that of kojic acid $(66.5{\mu}M)$. Conclusions : The data suggest that 3,4-dihydroxybenzaldehyde isolated and identified from Pinellia ternata is very strong inhibitor to melanin biosynthesis.

  • PDF

${\alpha}$-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation

  • Kim, Sung-Jin;Hong, Eun-Hye;Lee, Bo-Ra;Park, Moon-Ho;Kim, Ji-Won;Pyun, A-Rim;Kim, Yeon-Jeong;Chang, Sun-Young;Chin, Young-Won;Ko, Hyun-Jeong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.253-260
    • /
    • 2012
  • ${\alpha}$-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of ${\alpha}$-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although ${\alpha}$-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum $Ca^{2+}$ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that ${\alpha}$-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of ${\alpha}$-Mangostin daily for three days. However, the activation of autophagy by ${\alpha}$-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of $eIF2{\alpha}$, thapsigargin-induced ER stress was significantly reduced by ${\alpha}$-Mangostin. However, coadministration of thapsigargin with ${\alpha}$-Mangostin completely blocked the antitumor activity of ${\alpha}$-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of ${\alpha}$-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

  • Kim, Yikwon;Han, Dohyun;Min, Hophil;Jin, Jonghwa;Yi, Eugene C.;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.888-898
    • /
    • 2014
  • Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.

Effects of Mercuric Chloride on Gene Expression in NRK-52E Cells

  • Ahn, Joon-Ik;Baik, Si-Yeon;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.50-57
    • /
    • 2010
  • Mercuric chloride, a model nephrotoxicant was used to elucidate time- and dose- dependent global gene expression changes associated with proximal tubular toxicity. Rat kidney cell lines NRK-52E cells were exposed for 2, 6 and 12 hours and with 3 different doses of mercuric chloride. Cell viability assay showed that mercuric chloride had toxic effects on NRK-52E cells causing 20% cell death (IC20) at $40{\mu}M$ concentration. We set this IC20 as high dose concentration and 1/5 and 1/25 concentration of LC20 were used as mid and low concentration, respectively. Analyses of microarray data revealed that 738 genes were differentially expressed (more than two-fold change and p<0.05) by low concentration of mercuric chloride at least one time point in NRK-52E cells. 317 and 2,499 genes were differentially expressed at mid and high concentration of mercuric chloride, respectively. These deregulated genes showed a primary involvement with protein trafficking (CAV2, CANX, CORO1B), detoxification (GSTs) and immunity and defense (HMOX1, NQO1). Several of these genes were previously reported to be up-regulated in proximal tubule cells treated with nephrotoxicants and might be aid in promoting the predictive biomarkers for nephrotoxicity.

Chronic Administration of Catechin Decreases Depression and Anxiety-Like Behaviors in a Rat Model Using Chronic Corticosterone Injections

  • Lee, Bombi;Sur, Bongjun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.313-322
    • /
    • 2013
  • Previous studies have demonstrated that repeated administration of the exogenous stress hormone corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and results in depression and anxiety. The current study sought to verify the impact of catechin (CTN) administration on chronic CORT-induced behavioral alterations using the forced swimming test (FST) and the elevated plus maze (EPM) test. Additionally, the effects of CTN on central noradrenergic systems were examined by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity in rat brains. Male rats received 10, 20, or 40 mg/kg CTN (i.p.) 1 h prior to a daily injection of CORT for 21 consecutive days. The activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily CTN administration significantly decreased immobility in the FST, increased open-arm exploration in the EPM test, and significantly blocked increases of TH expression in the locus coeruleus (LC). It also significantly enhanced the total number of line crossing in the open-field test (OFT), while individual differences in locomotor activities between experimental groups were not observed in the OFT. Taken together, these findings indicate that the administration of CTN prior to high-dose exogenous CORT significantly improves helpless behaviors, possibly by modulating the central noradrenergic system in rats. Therefore, CTN may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression and anxiety disorders.