Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0207

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines  

Kim, Yikwon (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
Han, Dohyun (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
Min, Hophil (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
Jin, Jonghwa (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
Yi, Eugene C. (Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University)
Kim, Youngsoo (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
Abstract
Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.
Keywords
chemoresistance; gemcitabine; LC-MS/MS; pancreatic cancer; quantitative Proteomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Triola, G., Wittinghofer, A., Bastiaens, P.I., et al. (2013). Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497, 638-642.   DOI   ScienceOn
2 Thu, K.L., Radulovich, N., Becker-Santos, D.D., Pikor, L.A., Pusic, A., Lockwood, W.W., Lam, W.L., and Tsao, M.S. (2014). SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/beta-catenin signaling. Oncogene 33, 279-288.   DOI   ScienceOn
3 Tuveson, D.A., and Neoptolemos, J.P. (2012). Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148, 21-23.   DOI   ScienceOn
4 Voulgari, A., and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophysica Acta 1796, 75-90.
5 Wei, S., Gao, X., Du, J., Su, J., and Xu, Z. (2011). Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics. PLoS One 6, e28797.   DOI
6 Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362.   DOI   ScienceOn
7 Wisniewski, J.R., Ostasiewicz, P., and Mann, M. (2011). High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10, 3040-3049.   DOI   ScienceOn
8 Yu, K.H., Barry, C.G., Austin, D., Busch, C.M., Sangar, V., Rustgi, A.K., and Blair, I.A. (2009). Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery. J. Proteome Res. 8, 1565-1576.   DOI   ScienceOn
9 Zhang, Y., Wen, Z., Washburn, M.P., and Florens, L. (2010). Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272-2281.   DOI   ScienceOn
10 Zhou, J., and Du, Y. (2012). Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol. Cancer Res. 10, 768-777.   DOI   ScienceOn
11 Reynolds, A.B., Daniel, J., McCrea, P.D., Wheelock, M.J., Wu, J., and Zhang, Z. (1994). Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mo. Cell. Biol. 14, 8333-8342.   DOI
12 Samuel, N., and Hudson, T.J. (2012). The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 9, 77-87.   DOI
13 Sato, N., Fukushima, N., Maitra, A., Iacobuzio-Donahue, C.A., van Heek, N.T., Cameron, J.L., Yeo, C.J., Hruban, R.H., and Goggins, M. (2004). Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am. J. Pathol. 164, 903-914.   DOI   ScienceOn
14 Singh, A., and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751.   DOI   ScienceOn
15 Stergachis, A.B., MacLean, B., Lee, K., Stamatoyannopoulos, J.A., and MacCoss, M.J. (2011). Rapid empirical discovery of optimal peptides for targeted proteomics. Nat. Methods 8, 1041-1043.   DOI   ScienceOn
16 Sato, J., Kimura, T., Saito, T., Anazawa, T., Kenjo, A., Sato, Y., Tsuchiya, T., and Gotoh, M. (2011). Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 18, 700-711.   DOI
17 Seike, M., Kondo, T., Fujii, K., Yamada, T., Gemma, A., Kudoh, S., and Hirohashi, S. (2004). Proteomic signature of human cancer cells. Proteomics 4, 2776-2788.   DOI   ScienceOn
18 Swaney, D.L., Wenger, C.D., and Coon, J.J. (2010). Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 9, 1323-1329.   DOI   ScienceOn
19 Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890.   DOI   ScienceOn
20 Min, H., Han, D., Kim, Y., Cho, J.Y., Jin, J., and Kim, Y. (2014). Label-free quantitative proteomics and N-terminal analysis of human metastatic lung cancer cells. Mol. Cells 37, 457-466.   과학기술학회마을   DOI   ScienceOn
21 Mori-Iwamoto, S., Kuramitsu, Y., Ryozawa, S., Mikuria, K., Fujimoto, M., Maehara, S., Maehara, Y., Okita, K., Nakamura, K., and Sakaida, I. (2007). Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int. J. Oncol. 31, 1345-1350.
22 Pramanik, K.C., Boreddy, S.R., and Srivastava, S.K. (2011). Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6, e20151.   DOI
23 Mori-Iwamoto, S., Kuramitsu, Y., Ryozawa, S., Taba, K., Fujimoto, M., Okita, K., Nakamura, K., and Sakaida, I. (2008). A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol. Med. Rep. 1, 429-434.
24 Pavelka, N., Fournier, M.L., Swanson, S.K., Pelizzola, M., Ricciardi-Castagnoli, P., Florens, L., and Washburn, M.P. (2008). Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics 7, 631-644.   DOI
25 Poland, J., Urbani, A., Lage, H., Schnolzer, M., and Sinha, P. (2004). Study of the development of thermoresistance in human pancreatic carcinoma cell lines using proteome analysis. Electrophoresis 25, 173-183.   DOI   ScienceOn
26 Radulovich, N., Qian, J.Y., and Tsao, M.S. (2008). Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 439, 1-13.   DOI   ScienceOn
27 Rathos, M.J., Joshi, K., Khanwalkar, H., Manohar, S.M., and Joshi, K.S. (2012). Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers. J. Transl. Med. 10, 161.   DOI
28 Jones, S., Zhang, X., Parsons, D.W., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806.   DOI   ScienceOn
29 Juuti, A., Nordling, S., Lundin, J., Louhimo, J., and Haglund, C. (2005). Syndecan-1 expression--a novel prognostic marker in pancreatic cancer. Oncology 68, 97-106.   DOI   ScienceOn
30 Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelialmesenchymal transition. J. Clin. Invest. 119, 1420-1428.   DOI   ScienceOn
31 Kuramitsu, Y., Taba, K., Ryozawa, S., Yoshida, K., Zhang, X., Tanaka, T., Maehara, S., Maehara, Y., Sakaida, I., and Nakamura, K. (2010). Identification of up- and down-regulated proteins in gemcitabine-resistant pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Res. 30, 3367-3372.
32 Makawita, S., Smith, C., Batruch, I., Zheng, Y., Ruckert, F., Grutzmann, R., Pilarsky, C., Gallinger, S., and Diamandis, E.P. (2011). Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers. Mol. Cell. Proteomics 10, M111 008599.   DOI
33 Li, D., Xie, K., Wolff, R., and Abbruzzese, J.L. (2004). Pancreatic cancer. Lancet 363, 1049-1057.   DOI   ScienceOn
34 Lo, M., Ling, V., Wang, Y.Z., and Gout, P.W. (2008). The xccystine/ glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br. J. Cancer 99, 464-472.   DOI   ScienceOn
35 Locasale, J.W. (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583.   DOI   ScienceOn
36 Mercurio, A.M., Rabinovitz, I., and Shaw, L.M. (2001). The alpha 6 beta 4 integrin and epithelial cell migration. Curr. Opin. Cell Biol. 13, 541-545.   DOI   ScienceOn
37 Furukawa, T., Duguid, W.P., Rosenberg, L., Viallet, J., Galloway, D.A., and Tsao, M.S. (1996). Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 148, 1763-1770.
38 Han, D., Moon, S., Kim, H., Choi, S.E., Lee, S.J., Park, K.S., Jun, H., Kang, Y., and Kim, Y. (2011). Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique. J. Proteome Res. 10, 564-577.   DOI   ScienceOn
39 Griffith, O.W. (1999). Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 27, 922-935.   DOI   ScienceOn
40 Gstaiger, M., and Aebersold, R. (2009). Applying mass spectrometrybased proteomics to genetics, genomics and network biology. Nat. Revi. Genet. 10, 617-627.   DOI   ScienceOn
41 Han, D., Moon, S., Kim, Y., Ho, W.K., Kim, K., Kang, Y., Jun, H., and Kim, Y. (2012). Comprehensive phosphoproteome analysis of INS-1 pancreatic beta-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J. Proteome Res. 11, 2206-2223.   DOI   ScienceOn
42 Hruban, R.H., Goggins, M., Parsons, J., and Kern, S.E. (2000). Progression model for pancreatic cancer. Clin. Cancer Res. 6, 2969-2972.
43 Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44-57.
44 Huanwen, W., Zhiyong, L., Xiaohua, S., Xinyu, R., Kai, W., and Tonghua, L. (2009). Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol. Cancer 8, 125.   DOI   ScienceOn
45 Jameson, K.L., Mazur, P.K., Zehnder, A.M., Zhang, J., Zarnegar, B., Sage, J., and Khavari, P.A. (2013). IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat. Med. 19, 626-630.   DOI   ScienceOn
46 Choudhary, C., and Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. 11, 427-439.   DOI   ScienceOn
47 Chen, R., Yi, E.C., Donohoe, S., Pan, S., Eng, J., Cooke, K., Crispin, D.A., Lane, Z., Goodlett, D.R., Bronner, M.P., et al. (2005). Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129, 1187-1197.   DOI   ScienceOn
48 Chen, Y.W., Liu, J.Y., Lin, S.T., Li, J.M., Huang, S.H., Chen, J.Y., Wu, J.Y., Kuo, C.C., Wu, C.L., Lu, Y.C., et al. (2011). Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells. Mol. BioSyst. 7, 3065-3074.   DOI   ScienceOn
49 Cheung, H.W., Cowley, G.S., Weir, B.A., Boehm, J.S., Rusin, S., Scott, J.A., East, A., Ali, L.D., Lizotte, P.H., Wong, T.C., et al. (2011). Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl. Acad. Sci. USA 108, 12372-12377.   DOI   ScienceOn
50 Deer, E.L., Gonzalez-Hernandez, J., Coursen, J.D., Shea, J.E., Ngatia, J., Scaife, C.L., Firpo, M.A., and Mulvihill, S.J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39, 425-435.   DOI   ScienceOn
51 Fonslow, B.R., Stein, B.D., Webb, K.J., Xu, T., Choi, J., Park, S.K., and Yates, J.R., 3rd. (2013). Digestion and depletion of abundant proteins improves proteomic coverage. Nat. Methods 10, 54-56.
52 Gronborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteomics 5, 157-171.   DOI
53 Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., Abbruzzese, J.L., Gallick, G.E., Logsdon, C.D., McConkey, D.J., and Choi, W. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820-5828.   DOI   ScienceOn
54 Fryer, R.A., Barlett, B., Galustian, C., and Dalgleish, A.G. (2011). Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD lenalidomide. Anticancer Res. 31, 3747-3756.
55 Buchholz, M., Braun, M., Heidenblut, A., Kestler, H.A., Kloppel, G., Schmiegel, W., Hahn, S.A., Luttges, J., and Gress, T.M. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24, 6626-6636.   DOI   ScienceOn
56 Arao, S., Masumoto, A., and Otsuki, M. (2000). Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 20, 129-137.   DOI   ScienceOn
57 Bailey, K.M., and Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J. Biol. Chem. 283, 13714-13724.   DOI   ScienceOn
58 Burris, H.A., 3rd, Moore, M.J., Andersen, J., Green, M.R., Rothenberg, M.L., Modiano, M.R., Cripps, M.C., Portenoy, R.K., Storniolo, A.M., Tarassoff, P., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403-2413.
59 Cao, H., Le, D., and Yang, L.X. (2013). Current status in chemotherapy for advanced pancreatic adenocarcinoma. Anticancer Res. 33, 1785-1791.
60 Carmichael, J., Fink, U., Russell, R.C., Spittle, M.F., Harris, A.L., Spiessi, G., and Blatter, J. (1996). Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 73, 101-105.   DOI   ScienceOn
61 Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4, 118-132.   DOI   ScienceOn
62 Kuramitsu, Y., Wang, Y., Taba, K., Suenaga, S., Ryozawa, S., Kaino, S., Sakaida, I., and Nakamura, K. (2012). Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells. Anticancer Res. 32, 2295-2299.