Browse > Article
http://dx.doi.org/10.4110/in.2012.12.6.253

${\alpha}$-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation  

Kim, Sung-Jin (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Hong, Eun-Hye (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Lee, Bo-Ra (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Park, Moon-Ho (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Kim, Ji-Won (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Pyun, A-Rim (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Kim, Yeon-Jeong (Laboratory of Immunology and Microbiology, College of Pharmacy, Inje University)
Chang, Sun-Young (Laboratory of Immunology and Microbiology, College of Pharmacy, Ajou University)
Chin, Young-Won (Laboratory of Immunology and Microbiology, College of Pharmacy, Dongguk University)
Ko, Hyun-Jeong (Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University)
Publication Information
IMMUNE NETWORK / v.12, no.6, 2012 , pp. 253-260 More about this Journal
Abstract
${\alpha}$-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of ${\alpha}$-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although ${\alpha}$-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum $Ca^{2+}$ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that ${\alpha}$-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of ${\alpha}$-Mangostin daily for three days. However, the activation of autophagy by ${\alpha}$-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of $eIF2{\alpha}$, thapsigargin-induced ER stress was significantly reduced by ${\alpha}$-Mangostin. However, coadministration of thapsigargin with ${\alpha}$-Mangostin completely blocked the antitumor activity of ${\alpha}$-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of ${\alpha}$-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.
Keywords
Autophagy; ${\alpha}$-Mangostin; Thapsigargin; ER stress; Antitumor activity; Colon cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chao, A. C., Y. L. Hsu, C. K. Liu, and P. L. Kuo. 2011. $\alpha$-Mangostin, a dietary xanthone, induces autophagic cell death by activating the AMP-activated protein kinase pathway in glioblastoma cells. J. Agric. Food Chem. 59: 2086-2096.   DOI
2 Furukawa, K., K. Shibusawa, N. Chairungsrilerd, T. Ohta, S. Nozoe, and Y. Ohizumi. 1996. The mode of inhibitory action of alpha-mangostin, a novel inhibitor, on the sarcoplasmic reticulum Ca(2+)-pumping ATPase from rabbit skeletal muscle. Jpn. J. Pharmacol. 71: 337-340.   DOI
3 Ganley, I. G., P. M. Wong, N. Gammoh, and X. Jiang. 2011. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42: 731-743.   DOI
4 Thastrup, O., P. J. Cullen, B. K. Drobak, M. R. Hanley, and A. P. Dawson. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87: 2466-2470.   DOI
5 Rabinowitz, J. D. and E. White. 2010. Autophagy and metabolism. Science 330: 1344-1348.   DOI
6 Ogata, M., S. Hino, A. Saito, K. Morikawa, S. Kondo, S. Kanemoto, T. Murakami, M. Taniguchi, I. Tanii, K. Yoshinaga, S. Shiosaka, J. A. Hammarback, F. Urano, and K. Imaizumi. 2006. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26:9220-9231.   DOI
7 Kouroku, Y., E. Fujita, I. Tanida, T. Ueno, A. Isoai, H. Kumagai, S. Ogawa, R. J. Kaufman, E. Kominami, and T. Momoi. 2007. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14:230-239.   DOI
8 Bi, M., C. Naczki, M. Koritzinsky, D. Fels, J. Blais, N. Hu, H. Harding, I. Novoa, M. Varia, J. Raleigh, D. Scheuner, R. J. Kaufman, J. Bell, D. Ron, B. G. Wouters, and C. Koumenis. 2005. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24: 3470-3481.   DOI
9 Blais, J. D., C. L. Addison, R. Edge, T. Falls, H. Zhao, K. Wary, C. Koumenis, H. P. Harding, D. Ron, M. Holcik, and J. C. Bell. 2006. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell. Biol. 26: 9517-9532.   DOI
10 Mizushima, N., A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15: 1101- 1111.
11 Kim, Y. J., H. J. Ko, Y. S. Kim, D. H. Kim, S. Kang, J. M. Kim, Y. Chung, and C. Y. Kang. 2008. alpha-Galactosylceramide- loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int. J. Cancer 122: 2774-2783.   DOI
12 Chang, S. Y., H. R. Cha, J. H. Chang, H. J. Ko, H. Yang, B. Malissen, M. Iwata, and M. N. Kweon. 2010. Lack of retinoic acid leads to increased langerin-expressing dendritic cells in gut-associated lymphoid tissues. Gastroenterology 138: 1468-1478.   DOI
13 Ko, H. J., H. Yang, J. Y. Yang, S. U. Seo, S. Y. Chang, J. K. Seong, and M. N. Kweon. 2012. Expansion of Tfh-like cells during chronic Salmonella exposure mediates the generation of autoimmune hypergammaglobulinemia in MyD88- deficient mice. Eur. J. Immunol. 42: 618-628.   DOI
14 Iwawaki, T., R. Akai, K. Kohno, and M. Miura. 2004. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10: 98-102.   DOI
15 Quan, G. H., S. R. Oh, J. H. Kim, H. K. Lee, A. D. Kinghorn, and Y. W. Chin. 2010. Xanthone constituents of the fruits of Garcinia mangostana with anticomplement activity. Phytother. Res. 24: 1575-1577.   DOI
16 Matsumoto, K., Y. Akao, H. Yi, K. Ohguchi, T. Ito, T. Tanaka, E. Kobayashi, M. Iinuma, and Y. Nozawa. 2004. Preferential target is mitochondria in alpha-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg. Med. Chem. 12: 5799-5806.   DOI
17 Sato, A., H. Fujiwara, H. Oku, K. Ishiguro, and Y. Ohizumi. 2004. Alpha-mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J. Pharmacol. Sci. 95: 33-40.   DOI
18 Watanapokasin, R., F. Jarinthanan, Y. Nakamura, N. Sawasjirakij, A. Jaratrungtawee, and S. Suksamrarn. 2011. Effects of $\alpha$-mangostin on apoptosis induction of human colon cancer. World J. Gastroenterol. 17: 2086-2095.   DOI
19 Nakagawa, Y., M. Iinuma, T. Naoe, Y. Nozawa, and Y. Akao. 2007. Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease- G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg. Med. Chem. 15: 5620-5628.   DOI
20 Lee, H. K., L. M. Mattei, B. E. Steinberg, P. Alberts, Y. H. Lee, A. Chervonsky, N. Mizushima, S. Grinstein, and A. Iwasaki. 2010. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32: 227-239.   DOI
21 Li, Y., T. Hahn, K. Garrison, Z. H. Cui, A. Thorburn, J.Thorburn, H. M. Hu, and E. T. Akporiaye. 2012. The vitamin E analogue $\alpha$-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res. 72: 3535-3545.   DOI
22 Kim, I., W. Xu, and J. C. Reed. 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7: 1013-1030.   DOI
23 Hetz, C., P. Thielen, S. Matus, M. Nassif, F. Court, R. Kiffin, G. Martinez, A. M. Cuervo, R. H. Brown, and L. H. Glimcher. 2009. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23: 2294-2306.   DOI
24 Mizushima, N., B. Levine, A. M. Cuervo, and D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075.   DOI
25 Deretic, V. 2005. Autophagy in innate and adaptive immunity. Trends Immunol. 26: 523-528.   DOI
26 Kaser, A. and R. S. Blumberg. 2009. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21: 156-163.   DOI
27 Kaser, A. and R. S. Blumberg. 2011. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology 140: 1738-1747.   DOI