• Title/Summary/Keyword: LC alignment

Search Result 315, Processing Time 0.022 seconds

Effect of Electric field on an Injection Velocity in a Vertically Aligned Nematic Liquid Crystal (수직배향 네마틱 액정셀에서의 주입속도에 미치는 전기장 효과)

  • Jeon, Yeon-Mun;Kim, Sang-Gyun;Kim, Youn-Sik;An, Myeong-Hwan;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.695-699
    • /
    • 2006
  • Injection time of liquid crystal (LC) by capillary action in a vertically aligned (VA) nematic LC cell takes longer than that in a homogeneously aligned (HA) LC cell because Miesowicz viscosity in the former is bigger than that in the latter. To reduce liquid crystal injection time in the VA cell, we applied vertical electric field while injecting so that the orientation of LC molecules is changed from vertical alignment to homogeneous alignment. Consequently, the injection speed is improved by 25 % when compared with the cell without an applied field.

Solution-Derived Amorphous Yttrium Gallium Oxide Thin Films for Liquid Crystal Alignment Layers

  • Oh, Byeong-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.109-112
    • /
    • 2016
  • We demonstrated an alternative electrically controlled birefringence liquid crystal (ECB-LC) system with ion beam (IB)-irradiated yttrium gallium oxide (YGaO) alignment films using a sol-gel process. The surface roughness of the films was dependent on the annealing temperature; aggregated particles on surface were observed at lower annealing temperatures, whereas a smooth surface could be obtained with higher annealing temperatures. Higher transmittance in the visible region was observed at higher annealing temperatures. The film had an amorphous crystallographic state irrespective of the annealing temperature. Furthermore, ECB-LC cell with our IB-irradiated YGaO film yielded faster response time when compared to ECB-LC cell with rubbed polyimide. Considering the fast response time and high transmittance, the IB-irradiated YGaO-base LC system is a powerful alternative application for the liquid crystal display industry.

An Optical Configuration for Vertical Alignment Liquid Crystal cell with Wide Viewing Angle

  • Ji, Seung-Hoon;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.22-27
    • /
    • 2008
  • We propose an optical configuration of a vertical alignment (VA) liquid crystal (LC) cell to eliminate the light leakage in the diagonal direction. VA LC cell has an excellent contrast ratio in the normal direction due to the no phase-retardation. However, change of the phase-retardation occurs in all directions, which causes the light leakage and deteriorates the characteristics of the dark state. We designed the LC cell structure composed of multiple combinations with two A-plates and two C-plates in order to achieve wide viewing property on the Poincare sphere. From calculations, we show that the proposed structure can improve the viewing angle characteristics by compensating for the light leakage in all directions.

Nanoparticles-induced Alignment in Liquid Crystal Cells

  • Jeng, Shie-Chang;Kuo, Chia-Wei;Lin, Yan-Rung;Wang, Hsing-Lung;Liao, Chi-Chang;Yang, Chen-Yu;Hwang, Shug-June
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1077-1079
    • /
    • 2008
  • Nanoparticles-induced vertical alignment (NIVA) in the liquid crystal (LC) devices was observed and has been applied successfully on fabricating the hybrid-aligned nematic LC cells and guest-host LC cells. In this talk, we will discuss the characteristics of the electric and optical properties of NIVA-LC cells with different dopant concentrations and demonstrate that nanoparticles can be spin-coated on the substrate at a low temperature.

  • PDF

Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell

  • Cho, Sung Yong;Park, Sang Uk;Yang, Sung Mo;Kim, Sang Youl
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • Ultra-small optical anisotropy of a rubbed polyimide (PI) alignment layer is quantitatively characterized using the improved reflection ellipsometer. Twisted nematic (TN) cells are fabricated using the rubbed PIs of known surface anisotropy as alignment layers. Distribution of liquid crystal (LC) molecules in the TN cell is characterized using transmission ellipsometry. The retardation of the rubbed PI surface increases as rubbing strength increases. The tilt angle of the optic axis of the rubbed PI surface decreases as rubbing strength especially as the angular speed of the rubbing roller increases. Pretilt angle of LC molecules in the TN cell shows strong correlation with tilt angle of the optic axis of the rubbed PI surface. Both the apparent order parameter and the effective twist angle of the LC molecules in the TN cell decrease as the pretilt angle of LC molecules increases.

Fast Switching of Twisted Nematic Liquid Crystals Display Based on a High-K Yttrium Oxide (고유전율 Yttrium Oxide을 이용한 네마틱 액정 디스플레이의 고속 응답 전기-광학 특성)

  • Jung, Yoon Ho;Jeong, Hae-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.302-306
    • /
    • 2019
  • We investigated a solution-derived $Y_2O_3$ film treated by ion beam (IB) irradiation as a liquid crystal (LC) alignment layer. With IB irradiation, homogeneous LC alignment was achieved irrespective of the annealing temperature. To verify the effect of IB irradiation, we conducted surface analyses such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). As $Y_2O_3$ is a high-k material, the electro-optical properties of the twisted nematic (TN) cells were superior to those of conventional TN cells based on a rubbed polymer, with an LC rising time of 4.1ms and falling time of 2.9ms. The IB-irradiated $Y_2O_3$ is a good alternative as an alignment layer for fast-switching TN LC displays.

Symmetric-viewing liquid crystal display with alternating alignment layers in an inverse-twisted-nematic configuration

  • Na, Jun-Hee;Li, Hongmei;Park, Seung-Chul;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.191-194
    • /
    • 2011
  • A symmetric-viewing inverse-twisted-nematic (ITN) liquid crystal display (LCD) with alternating alignment layers was developed using a stamping-assisted rubbing (SAR) technique. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed vertical-alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provided a protective layer covering the first rubbed alignment layer during the second rubbing process, which promoted the vertical alignment of the LC molecules. The LC cell in the ITN geometry with two orthogonally rubbed alignment layers showed symmetric-viewing characteristics with fourfold symmetry. The SAR technique was shown to be a mask-free alignment method of producing multidomains for symmetric-viewing LCDs.

Stamping-assisted Fabrication Technique of the Bidirectional Alignment Layer for Wide-Viewing Twisted-Nematic Liquid Crystal Displays

  • Koo, Kyung-Mo;Na, Jun-Hee;Kim, Yeun-Tae;Li, Hongmei;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.180-183
    • /
    • 2009
  • A stamping-assisted rubbing technique for generating bidirectional alignment in the fabrication of wide-viewing twistednematic (TN) liquid crystal displays (LCDs) was developed. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provides a protective layer that covers the first alignment layer during the second rubbing process to facilitate the bidirectional alignment of the LC molecules. The LC cell in the twisted geometry with two bidirectional-alignment layers showed stable electro-optic properties and wide-viewing characteristics. The stamping-assisted rubbing technique serves as a mask-free alignment method of producing multidomains for wide-viewing LCDs.

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Rho, Soon-Joon;Lee, Dae-Kyu;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about $4^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF

Liquid Crystal Alignment Effects using a DLC Thin Film (DLC 박막을 이용한 액정 배향 효과)

  • 조용민;황정연;서대식;노순준;이대규;백흥구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.346-349
    • /
    • 2001
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of diamond like carbon (DLC) thin film. A high pretilt angle of about 4$^{\circ}$ was measured by ion beam(IB) exposure on the DLC thin film surface. A good LC alignment was observed by the IB alignment method on the DLC thin film surface at annealing temperature of 200$^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of 220$^{\circ}C$ . Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment can be achieved by the IB alignment method on the DLC thin film surface.

  • PDF