• Title/Summary/Keyword: LC/MS analysis

Search Result 751, Processing Time 0.034 seconds

Validation of simultaneous mycotoxin analysis method in pet food using LC-MS/MS (LC-MS/MS를 이용한 반려동물 사료에서 곰팡이독소 동시분석법 유효성 확인)

  • Choi, Yoon Hwa;Ahn, Woo Seok;Kim, Ji Eun;Kim, Doo Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.3
    • /
    • pp.237-242
    • /
    • 2022
  • The simultaneous analysis of mycotoxins using LC-MS/MS, a food official analysis method, was applied with compound feed for pets with high consumer preferences. In this study, the linearity of all calibration curves showed good linearity of 0.99 or more. and both the accuracy (recovery rate) and precision (repeatability) criteria of the concentration range for each mycotoxin in the National Agricultural Products Quality Management Service's Validation and Verification Guidelines were met. And as a result of analyzing FAPAS QCM in the same way, it was assesed that the z-scores of Aflatoxin B1, Ochratoxin A, Zearalenone, and Fumonisin B1, were within ±2 range. This study showed that the application of the food official analysis method to compound feed for pets is suitable.

Analytical method development for residual metamizol in meat using LC/MS/MS (식육 중 메타미졸 잔류물의 LC/MS/MS 시험법 개발)

  • Kim, Tae-Wook;Yang, Yeung-Kyong;Gwoak, Soon-Chul;Kang, Dong-Young
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, an analytical method was developed for residual metamizol in beef and pork using LC/MS/MS. 4-methylaminoantipyrin (MAA), the main metabolite of metamizol was targeted for analysis instead of its parent compound. MAA was simply extracted from meat by acetonitrile, purified and then analyzed by multiple reaction monitoring method (MRM). Standard addition method was used for calibration. The calibration curves showed the linearity of $r^2$ > 0.99 for both matrices included. The developed method was validated by six-time intra-lab tests and inter-lab tests with two other institutes. The validation of the whole procedure for beef showed the intra-lab accuracies of 78-102% (CV 5.5-9.1%) and the inter-lab accuracy of 98% (CV 14%); the intra-lab accuracies of 95-99% (CV 3.9-5.6%) and the inter-lab accuracy of 111% (CV 13%).

Study on analytical method of residual benzimidazole anthelmintics in meat by LC/MS (LC/MS를 이용한 식육중 잔류 벤지미다졸계 구충제 분석법 연구)

  • Choi Eun-Young;Seo Heyng-Seok;Baek Kui-Jeong;Hur Boo-Hong;Seo Lee-Won;Joung Dong-Suk
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.1
    • /
    • pp.81-89
    • /
    • 2005
  • Recently, mass spectrometry coupled with liquid chromatography (LC/MS) has been a preferred technique for determination of organic compounds in complex matrixes. LC/MS provides a high degree sensitivity and specificity of the compounds of interest. The purpose of this study was to confirm analytical method of residual 6 benzimidazoles (thiabendazole, oxfendazole, mebendazole, albendazole, flubendazole and fenbendazole) in meat by LC/MS. Benzimidazoles were analyzed by LC/MS on XTerra $C_{18}$ column with 0.01% trifluoroacetic acid-acetonitrile (TFA) in a gradient mode as mobile phase, and that were identified by electrospray ionization with selected ion recording mode at 150-350 amu mass range. Residual benzimidazoles were extracted from tissue with ethylacetate, and elute benzimidazoles with $50\%$ acetonitrile. In the LC/MS analysis of benzimidazoles, signal to noise ratio was showed relatively high in the positive mode and special ion in the quality analysis was determined via $[M+H]^+$ and Fragment ions. A spectrum of benzimidazoles was showed from all 6 benzimidazoles

Validation of LC-MS/MS Method for Analysis of Paralytic Shellfish Toxins in Shellfish and Tunicates (LC-MS/MS를 이용한 패류 및 피낭류 중 마비성 패류독소 분석법의 유효성 검증)

  • Cho, Sung Rae;Kim, Dong Wook;Yu, Hean Jae;Cho, Seong Hae;Ryu, Ara;Lee, Ka Jeong;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2020
  • The mouse bioassay has been used widely for the monitoring of paralytic shellfish toxins (PSTs) in many countries. However, this method shows low sensitivity and high limit of detection (LOD), as well as it cannot confirm toxic profiles. Recently, LC-MS/MS method was studied for the quantitative of PSTs, however, the method has any problems with unstable retention times by ionization suppression caused by high salt concentration in shellfish extracts. To establish an alternative method for PSTs analysis, we tried to original LC-MS/MS methods adding desalting operation using amorphous graphitized polymer carbon solid-phase extraction cartridges. The method validation was conducted to determine linearity, limit of detection, limit of quantification (LOQ), accuracy, and precision in quantifying PSTs. The correlation coefficients for all tested PSTs maintained over 0.999. The LODs and LOQs for all PSTs were about 0.19-1.05 ㎍/kg and 0.58-3.18 ㎍/kg, respectively. The accuracies for PSTs were 95.4-107.7% for saxitoxin group, 97.1-100.9% for gonyautoxin group, 99.0-100.8% for N-sulfocarbamoyl toxin group, and 96.8-104.6% for decarbamoyl toxin group. These results indicate that the modified LC-MS/MS method was appropriate for analyzing the PSTs in shellfish and tunicates.

Identification of Xanthium Sibiricum Components using LC-SPE-NMR-MS Hyphenated System

  • Sohn, Ji Soo;Jung, Youngae;Han, Ji Soo;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • Xanthium sibiricum is used as a traditional folk medicine for the treatment of cancer, fever, headache, nasal sinusitis, and skin pruritus. This study aimed to identify components from Xanthium sibiricum extracts using an SPE-800MHz NMR-MS hyphenated system. The simultaneous acquisition of MS and NMR spectra from the same chromatographic peaks significantly increases the depth of information acquired for the compound and allows the elucidation of structures that would not be possible using MS or NMR data alone. LC -NMR analysis was conducted using a HPLC separation system coupled to 800 MHz spectrometer equipped with a cryoprobe, and a SPE unit was used to automatically trap chromatographic peaks using a HPLC pump. LC-MS analysis was conducted with a Q-TOF MS instrument using ESI ionization in the negative ion mode. Using the hyphenated analysis, several secondary metabolites were identified, such as 3',5'-O-dicaffeoylquinic acid, 1',5'-O-dicaffeoyl- quinic acid, and ethyl caffeate. These results demonstrate that the SPE-800MHz NMR-MS hyphenated system can be used to identify metabolites within natural products that have complex mixtures.

Analysis of Amadori Compounds in Tobacco Leaf by LC-MS/MS (LC-MS/MS를 이용한 담배 중 Amadori Compounds의 분석)

  • Min, Hye-Jeong;Kim, Young-Hoi;Lee, Jeong-Min;Jang, Gi-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.33 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • Amadori compounds(1-deoxy-1-amino-2-ketoses) are important precursors of color, flavor and aroma produced in foods. Amadori compounds occur naturally in tobacco. The contribution of amadori compounds to smoke quality has been (of) interest because of their roles of the Maillard reaction in the leaf chemistry. The amounts of these compound in tobacco are affected by the processes of aging, drying and storage conditions. In this study, eight compounds were chemically synthesized because amadori compounds (have not been sold commercially these days.) were not available for obtaining commercially. The aim of this study was to develop the analytical method of amadori compounds in tobacco leaf by the liquid chromatography mass spectrometry using triple quadrupole analyzer(LC-MS/MS). This method was simple, rapid, selective and sensitive, and eight amadori compounds were simultaneously and quantitatively analyzed within 20 minutes. This method showed excellent accuracy and precision. Recovery rates of amadori compounds ranged from 86% to 102%, with relative standard deviation(RSD) ranged from 2.6% to 5.9%. This method was applied to analysis of amadori compounds contents of tobacco leaves in different varieties. Furthermore, it was expected that the method could be extended to the analysis of other amadori compounds.

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review

  • Harlina, Putri Widyanti;Maritha, Vevi;Musfiroh, Ida;Huda, Syamsul;Sukri, Nandi;Muchtaridi, Muchtaridi
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.744-761
    • /
    • 2022
  • The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

Quantitative Analysis and Qualification of Amitrole Using LC/ESI-MS (LC/ESI-MS를 이용한 아미트롤의 정성확인 및 정량분석)

  • Park, Chan-Koo;Eo, Soo-Mi;Kim, Min-Young;Sohn, Jong-Ryeul;Mo, Sae-Young
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.117-129
    • /
    • 2004
  • Amitrole in environment, difficult to be analyzed by GC or GC/MS due to high polarity and low volatility, was analyzed by LC/ESI/MS in the study. Maximum peak intensity of amitrole in LC/MS/ESI mass spectrum is m/z 85 of protonated molecular ion $(M+H)^+$ with 30V of cone voltage at SIR mode. It was confirmed that ratios between main ion of amitrole, 85 of protonated molecular ion, and m/z 58 fragmented ion of amitrole, had increased corresponding with the increment of cone voltage from 20V to 70V. The isotope molecular weight of amitrole was $86([M+H])^+$ at LC/MS analysis and the mass spectrum ratio between 85 mass and 86 mass was not different by the change of concentration but similar to theoretical ratio(less than 10% standard deviation).The linearity of standard calibration curve under same condition with sample treatment method had $y=1.09354e^6X+26947.2$ and $r^2=0.99$. Recovery rates in water and soil samples were 77.64~83.44% and 71.11~79.44%, respectively. Reliability of the analysis was performed with 5 repeated measurements at each level of standard concentration and the result showed that relative standard deviation was less than 10%; therefore, the extraction and analysis method in the study suggested that it would be reliable to measure amitrole in water and soil media.