• 제목/요약/키워드: LAD estimator

검색결과 11건 처리시간 0.021초

Comparison of Bootstrap Methods for LAD Estimator in AR(1) Model

  • Kang, Kee-Hoon;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.745-754
    • /
    • 2006
  • It has been shown that LAD estimates are more efficient than LS estimates when the error distribution is double exponential in AR(1) model. In order to explore the performance of LAD estimates one can use bootstrap approaches. In this paper we consider the efficiencies of bootstrap methods when we apply LAD estimates with highly variable data. Monte Carlo simulation results are given for comparing generalized bootstrap, stationary bootstrap and threshold bootstrap methods.

분할표 분석을 위한 절사 LAD 추정량과 최적 절사율 결정 (Trimmed LAD Estimators for Multidimensional Contingency Tables)

  • 최현집
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1235-1243
    • /
    • 2010
  • 다차원 분할표를 구성하는 범주형 변수들의 연관관계를 식별하기 위하여 널리 이용되는 로그선형모형을 위한 절사 LAD(least absolute deviations) 추정방법을 제안하였다. 제안된 방법은 가중 LAD 추정을 반복하여 계산이 수행되므로 분할표 분석을 위해 적용할 수 있는 여러 연관성 모형(association models)에 직접 적용할 수 있다. 또한 붓스트랩을 이용한 최적절사율을 결정하는 방법이 갖는 공분산행렬을 과소추정하는 문제를 해결하기위한 절사율 결정 방법을 제안하였다. 모의실험을 통해 제안된 방법이 붓스트랩 방법에 비하여 항상 우수한 절사율을 보인다는 것을 설명하였으며, 제안된 방법들의 실제 자료분석 결과를 제시하였다.

Bootstrap of LAD Estimate in Infinite Variance AR(1) Processes

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.383-395
    • /
    • 1997
  • This paper proves that the standard bootstrap approximation for the least absolute deviation (LAD) estimate of .beta. in AR(1) processes with infinite variance error terms is asymptotically valid in probability when the bootstrap resample size is much smaller than the original sample size. The theoretical validity results are supported by simulation studies.

  • PDF

AR(1) 모형의 모수에 대한 L-추정법 (L-Estimation for the Parameter of the AR(l) Model)

  • 한상문;정병철
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.43-56
    • /
    • 2005
  • 본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.

Strong Representations for LAD Estimators in AR(1) Models

  • Kang, Hee-Jeong;Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • 제27권3호
    • /
    • pp.349-358
    • /
    • 1998
  • Consider the AR(1) model $X_{t}$=$\beta$ $X_{t-1}$+$\varepsilon$$_{t}$ where $\beta$ < 1 is an unknown parameter to be estimated and {$\varepsilon$$_{t}$} denotes the independent and identically distributed error terms with unknown common distribution function F. In this paper, a strong representation for the least absolute deviation (LAD) estimate of $\beta$ in AR(1) models is obtained under some mild conditions on F. on F.F.

  • PDF

Weighted Least Absolute Deviation Lasso Estimator

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.733-739
    • /
    • 2011
  • The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of $L_1$ regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to outliers, heavy-tailed errors or leverage points.

자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구 (A Comparison of Robust Parameter Estimations for Autoregressive Models)

  • 강희정;김순영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2000
  • 본 논문에서는 가장 많이 사용되는 시계열 모형중의 하나인 자기회귀모형에서 모수를 추정하는 방법으로 최소 절대 편차 추정법(least absolute deviation estimation)을 포함한 로버스트한 추정방법 (robust estimation)의 사용을 제안하고 모의 실험을 통하여 이러한 방법들을 기존의 최소 제곱 추정 방법과 예측의 관점에서 비교 검토하여 시계열 자료분석에서의 로버스트한 모수 추정 방법의 유효성을 확인해 보고자 한다.

  • PDF

Test of Hypotheses based on LAD Estimators in Nonlinear Regression Models

  • Seung Hoe Choi
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.288-295
    • /
    • 1995
  • In this paper a hypotheses test procedure based on the least absolute deviation estimators for the unknown parameters in nonlinear regression models is investigated. The asymptotic distribution of the proposed likelihood ratio test statistic are established voth under the null hypotheses and a sequence of local alternative hypotheses. The asymptotic relative efficiency of the proposed test with classical test based on the least squares estimator is also discussed.

  • PDF

On Asymptotic Properties of Bootstrap for Autoregressive Processes with Regularly Varying Tail Probabilities

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • 제26권1호
    • /
    • pp.31-46
    • /
    • 1997
  • Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.

  • PDF