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Abstract

Let X; = BX,_1+¢, be an autoregressive process where |3| < 1 and
{e.} is independent and identically distributed with regularly varying
tail probabilities. This process is called the asymptotically station-
ary first-order autoregressive process (AR(1)) with infinite variance.
In this paper, we obtain a host of weak convergences of some point
processes based on bootstrapping of {X;}. These kinds of results can
be generalized under the infinite variance assumption to ensure the
asymptotic validity of the bootstrap method for various functionals of
{X.} such as partial sums, sample covariance and sample correlation
functions, etc. '
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1. INTRODUCTION

Recently, there has been increasing interest in developing stochastic pro-
cesses to model heavy-tailed data which usually can be found in economic
phenomena. One of assumptions in these models is the error terms have
regularly varying tail probabilities. In such cases, asymptotic behaviors of
various functionals of observations can be obtained by point process con-
vergeflce results as in Davis and Resnick (1985) and Davis, Knight and Liu
(1992). In this paper, we investigate the bootstrap of point processes which
are related to the distribution of LAD (Least Absolute Deviation) estima-
tors and prove that the bootstrap procedure is asymptotically valid when the
bootstrap resample size m satisfies m — oo and m /n — 0 as the original
sample size n goes to infinity. For this purpose, let {X,;} be observations
from the first-order autoregressive process (AR(1)) satisfying the difference
equations

Xt:/BXt—l+€ta X(]:O, t:1,...,n (11)

where 3 is a parameter of the process with |3| < 1 and {¢,} is a sequence of
independent and identically distributed random errors whose distribution is
in the domain of attraction of a stable distribution with index 1 < o < 2
(written as e) € D(«) ). In other words, the distribution of {¢,} satisfies the
following conditions

Pllei| >z ] =2"°L(z) (1.2)

and A
lim P[€1>.’E] .

S Pller > 5] (1:3)

where L(z) is a slowly varying function at co and 0 < p < 1. See Feller (1971)
for more details on the domain of attraction of a stable law. The AR(1)
process under the above conditions is asymptotically stationary and has a
finite mean and an infinite variance. Without loss of generality, we assume
that £; has a continuous distribution. In fact, the latter two conditions (1.2)
and (1.3) imply that

nP(ley| > apz) — 7% forall z>0 (1.4)
where {a,} is a sequence of positive constants such that

a, = inf{z; P[le|>z]<n'} (1.5)
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Under the above infinite variance conditions, Davis, Knight and Liu (1992)
showed that the LAD estimator 3, which satisfies the following

Z |Xz - énXt—ll = inf ZIXL - BX] (1.6)
t=1 1B1<1 5

converges to the unknown parameter 3 in (1.1) faster than the least squares
estimator and the rate of convergence is getting fast as «, the index of law,
decreases to 1. Also, they proved by the point process techniques that the
LAD estimator 3, in (1.6) has a limiting distribution when B, has been
normalized with the sequences of {a,} in (1.5).

The purpose of this study is to show that these point process results are
approximated well by the bootstrap method and these kinds of results can be
generalized to approximate the weak limit behavior of various functionals of
observations under these infinite variance assumptions.

The implementation of the bootstrap procedure can be done as follow-

ing; given the original sample X,,...,X,, construct the bootstrap sample
X:,..., X} by the recursive formula
X =8,X] | +el, X =0, t=1,...,m. (1.7)

where {e}}’s are i.i.d. random variables from F,, the empirical distribution
function of the residuals, £, = X, — BnXt_l, t=1,...,n with Bn given by
(1.6). In general, the presence of (*) will denote that we are dealing with the
bootstrap quantity.

The limit behaviors of various functionals of observations in the present
context heavily depend on the assumption in (1.4). In order to reproduce the
same asymptotic results with the above restriction on the bootstrap resample
size m, we need to show that the similar result holds for the bootstrap random
variables, namely that for all z > 0,

mP*( |e]| > apz ) — z7° in probability (1.8)

where {a,,} is defined in (1.5).

The remainder of this paper is organized as follows. In Section 2, we con-
sider the properties of the bootstrap distribution of random variables {¢;}.
Section 3 contains the extention of these results to the point processes based
on the bootstarp random variables { X} in (1.7). We essentially follow the
ideas of Davis and Resnick (1985) to derive the same asymptotic results for
the point processes based on {X;}. The applications of these point process
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convergence results under the infinite variance settings are considered in Sec-

tion 4. For further background on point processes, see Davis and Resnick
(1985) and Resnick (1987).

2. PRELIMINARY RESULTS

Let {¢,} be an i.i.d. sequence having regularly varying tail probabilities as
defined in (1.2) and (1.3). Further let {e,,}, {6} and {I';} be independent
sequences of random variables such that ¢, ; 4 €1 t.0.d., {6} are i.i.d. with
P[6k—1]_p—1—P[6k_—1] and I'y = E; + --- + Ey, where {E;}’s
are i.i.d. exponential r.v.’s with mean 1. Also denote {¢;} be a sequence of
bootstrap random variables from F , the empirical distribution of residuals
{é:}. For a fixed integer » > 1, let

r

m o0
= - and J = I “1/a 2.1
kgl * _IZ( ) Z (Ek,i,akrk Y ei) ( )

k=1i=1

where I, (B) is defined as an indicator function of z for B € Rl q_ isin
(1.5), 2" = (€-1:€k_2,---,€%_,) and e; € R’ is the basis element with ith
component equal to one and the rest zero. See Davis and Resnick (1985) for
more details on the relevant state space and relevant measure for the processes
{J:} and J.

Define the measure x(dt, dz) = dt x A(dz) on the space R x (R\{0}) where
Adz) = apr™* (g w)(z)dz +a(1—p)(—2) " '1(_4 o)(z)dz and let S be the
collection of all sets B of the form

B = (bo,Co] X (b1,01] X e X (br,cr] (22)

where the r-dimensional rectangle (b,, 1] X -+ - X (b, c,] is bounded away from
(0,0,---,0) and b; < ¢;,b; # 0,¢; #0 for i = 1,...,r. Moreover, since B € S
is bounded away from zero, either

(C1) (brye) x - x (br,e.JN{ye; :y € R} =0 for i=1,...,r

or

(©2) (el x Gualnteyery={ ool 127
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That is, the rectangle (b, c;] X - - - X (b, ¢, either has empty intersection with
all of the coordinate axes or intersects exactly one in an interval. Note that
in (C2), b, <0<c fori#4 and 0 & (bs, cr]. Also, it is obvious that

P(J(OGB)=0)=1 forall B€S.

In the following lemmas, we state some preliminary results which are
necessary to prove some basic convergences of the point processes {J:} and
J in (2.1).

Lemma 2.1. With probability 1,
sup| P*(e] <z)—-P(ey<z)|—0. (2.3)

T€R

Proof. Let F(z) = P(e; < z ). First notice that for all § > 0, and for all
r € R,

1 n
n

1 1¢
= ; E I(étﬁx, |ét—€t|36) + ;l‘ E I(étsx,lét—5t|>6)
t=1

12 11
< = I(e, < 8) - - . 2.4
S n; (51_1"*' 5ng 5t| ( )
Similarly,
12 . 1< 11 R
;Z I(é, <z) > ;g I(e, <z —6) — g;l— |€r — &4 - (2.5)

,.4

Thus, by (2.4) and (2.5), for all § > 0, and for all z

Z é < z)— F(z)

sup| P*(e;<z)—P(egy<z)| = sup

< sup %Zl(st<m) F(z) +5111p|F(x+6)—F(x—6)|

A
w
=
T

%Z I(e, < z) — F(x)

+ sup| F(z +6)— F(z —6) |

+ —l,én—B
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So, by the Glivenko-Cantelli theorem and by the result of Gross and Steiger
(1979), 8, =5 B, and (1/n) X0, || 25 Ele;| < oo, for all § > 0, almost
surely,

limsup sup| P*(e] <z )—P(e <z)]
z€R

n—so0

< sup [F(z+6)—F(z-6)| — 0

z€R

as § — 0 since the distribution function of ¢, is continuous. Therefore, (2.3)
is proved.

Lemma 2.2. For any interval (b,c] on R with b # 0,¢c # 0,b < ¢ and
0¢& (b,

mP*(a,'e} € (bc]) — A (bc]) in probability (2.6)
provided,
m, n — oo insuch a way that m/n — 0 (2.7)

where a,, is defined in (1.5) and the measure X is defined on R\{0} by A(dz) =
apz =g o) (2z)dz + (1 — P) (=) (Lo (z)dz.

Proof. First of all, under the condition (2.7), we shall prove the following
results which are needed to prove the above lemma.

EZI(a;let € (b,c]) — mP(azler € (bc]) = o0,(1) (2.8)
=1
maXi<i<q |51| — Op(l) (29)
a, :
maXi<i<n | € — €| = 0,(1). (2.10)

a"m
First, it is easy to show (2.8) with the Chebyshev’s inequality and the condi-
tion m/n — 0 and the fact that

mP(a,'e; € (be]) — A(b,c]. (2.11)

It is also not difficult to show (2.9) since for every 8; > 0,

max &
P( 1§t§n|t|>61>

£2%

= 1-P(leg] € a,6; forall 1<t<n)

1 n
= 1—(1——nP(|€1|>an61)> — 1 —exp(—6;%)
n
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which goes to 0 as §; — oo. So, (2.9) is proved. Also, since a, (B, —B) = 0,(1)
by the result of Davis, Knight and Liu (1992) and max;<i<, | € — &/ | =
|8, — B] MaX;<i<n | Xi—1] < |8, — B8] maxici<a |e:] 1+|ﬂl’ we have by (2.9) that

maxlstsn lét - Et|

A
1 maxlsts'n |6t | ~ 1
am an. a’n|ﬂn ﬁ‘ 1_ ‘ﬂl

Now, to prove (2.6), in view of (2.8) and (2.11), it suffices to show that

< — 0 in probability.

mP*(a'e} € (bc]) — —:—?Zl(a,’nlst € (b,c))
=1

= BS 1(a;lé € (be]) - 23 I(a;te, € (be])
n n
— 0 in probability. .

Notice that
TS I(a}é € (be]) = =3 I(azle € (bel)
n =1 "=
_m . ~12 -1
= —Zl(am é € (bc],ate & (bc])
n o=
™m o ~12 -1
- =Y I(a,'é & (bc], an'er €(bc]). (2.12)
"=
Here, by the argument in Lemma 3.2 of Kang (1995), we can show that
m g —12 -1 P
_Zl(am € € (bvc] y Ay &t g (b,C]) — 0.
N o=
Similarly, it is not difficult to prove that for the second term in (2.12),
TS I(a;'é & (bee], ap'e. € (be]) <> 0.
n =1

This completes the proof.

Lemma 2.3. Under the conditions of Lemma 2.2, for all z > 0,

mP*(atlel| > ¢) — =%  in probability .
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Proof. By a similar argument in the proof of Lemma 2.2, we can show that
for all z > 0,

mP*(a}le] € (—o0,—2z)) -5 A(—o00,—z)
mP*(a;'e] € (z,+00)) = Az, 400).

Therefore,

mP*(a tell > «)
= mP*(a;'e} € (—o0,—x)) + mP*(a;le] € (z,+00))

25 A(=o00,—z) + Az, +00) = z7°.

Remark. When m = n, i.e., when the bootstrap sample size is equal to the
original sample size, then mP*(a_'e} € (b,c]) does not converge to A(b, c] in
probability but converges in distribution to a poisson random variable. That
is, mP*(a,'e} € (b,c]) =nP*(a;'e} € (byc]) =37, I(a]lé, € (bc]) =
Y, I(a]'e, € (bc]) > N where N is a poisson random variable with
mean A(b,c | because 357, I(a;'e; € (b,c]) is a binomial variable and
nP(a;'e; € (b,c]) — A(b,c] asn — 0.

3. BASIC CONVERGENCES

In this section, we shall prove that under the condition of m, n — oo in
such a way that m/n — 0, for every nonnegative integer value z, and for all
Bes,

P(J,(B)=z) - P(J(B)y =z) — 0 in probability

where J and J are point processes defined in (2.1) and B is a (r + 1)-
dimensional rectangle in (2.2). An argument involving continuous map-
ping theorem allows us to extend this result to show that a sequence of
point processes based on {X;} converges to another limit point process.
Here, it is worth noting that the process > ;2,1 (6,15 %) is a Poisson pro-

cess on R\{0} with intensity measure \(dz) = apzr™*"'1( ) (z)dz + a(l —
P)(—z) " '1(_w,0)(z)dz. For more details on Poisson processes, see Resnick
(1987). From now on, throughout the paper, we will assume that m, n — oo
in such a way that m/n — 0, unless stated otherwise. We begin with a lemma
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which says some properties of the point processes J;, and J with respect to
the cases (C1) and (C2) where the cases (C1) and (C2) are defined in the
previous section.

Lemma 3.1. Denote J* and J be the point processes defined in (2.1) and
let B in (2.2) satisfy (C1). Then,

P(J(B) =0) =1 and E'(J,(B)) — 0. (3.1)
Also, if B satisfies (C2), then
P(J(B) =0) = ezp(—p((bo,co] X (by,ci])) and
E*(J5(B)) - u((bo,co} x (bisci]) - (3.2)

Proof. Consider the case when B satisfies (C1). Then it is obvious that
P(JB)=0) =1

since (b, ¢;] X -+ X (b, c,] has empty intersection with all of the coordinate
axes and

E*(J.(B)) = Y P'(e € (bo,co),a,'er 1 € (by,ci]y. .. ater . € (brycr])
k=1

= S P(el € (oyeol) [T P (anleis € (binci])
k=1 =1

P* (e} € (bo,co] ) (P (' |efl > d))*

NE

<

x>
i
—

where d is the minimun of |b;, |, |c;, |, |bi;| 2and |c;,| which are end points of the
intervals that do not contain zero. Thus,

1

E'(J.(B)) < m(P(a;'le]l > d))* = = (mP"(a,'le]l > d))* — 0
m

by Lemma 2.3. Suppose B satisfies (C2). It is also clear that

P(J(B) = 0) = exp( —p((bo, co] X (b, cx]))

since the point process J is a PRM (Poisson random measure) with mean
measure p((bg, co] X (bi,ci]). As above,

E*(J(B)) = Z P*(e; € (bo,Co],CL;ll&Z__l e (by,al,...,azter_, € (b, e
k=1

P*( &} € (bo,co] ) ﬁP*(a;IE} € (bi,ci])

1 i=1

NIE

k

i

39
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since b; < 0 < ¢; for i # ¢ aundam — 00, [Lizs P*(a;'e} € (bi,ci]) — 1 as.
Therefore, :

B'(1;(B)) ~ P*(&} € (bo,col ) mP* (azle] € (byrer])
— P(e1 € (bo,co]) Ay en] =l (bo, co] X (Bir, o))
by Lemma 2.1 and Lemma 2.2.
Proposition 3.2. Let J; = Y0 | ¥ 11(5 cie,)+ Lhen for all nonnega-
tive integer value z, and for all B € S,

P*(J:(B) =z) — P (J (B) = z) — 0 in probability. (3.3)

Proof. Since J7, (B) and J’ (B) are nonnegative integer valued, it suffices to
show that for all § > 0,

P*(|J;(B) — Ju(B)| > 6) — 0 in probability. (3.4)

First, consider the case when B satisfies (C1). Thenby (3.1), E*(J: (B)) =
0 and J »(B) = 0 a.s. because the points of J* are located on the coordinates
axes. So, by the Markov’s inequality, (3.4) is proved. Now, suppose that B
satisfies (C2) in which case 0 € (b;,c; ],i # 4 and 0 & (by, ¢y |. Note that

i'—1

JT:L(B) et kzl I(E,:,a;lZ,ﬁr))(B) + kz—:, I(E;Ya:nlzir))(B)

let

= Jo(B) + J5,(B)
By the same reason as in the proof of Lemma 3;1, we can show that
E'(J(B)) < (~1)P'(e] €an(bs,cn])
— 0 in probability (3.5)

because a,, — 00 and 0 & (bys,cys |. As for the second term J;,,(B), by (3.2),
we can see that

E*(J;5(B)) — P(e1 € (bo,co] ) Abi,cu] = p( (bo,co] % (b, ca]) (3.6)
Also, by Lemma 2.1 and 2.2,

E'(Ja(B)) = 3 P*(ein € Gorenl, alef € (buyer ])

= P'(el € (;)o,c()] YymP*(a,'e} € (b, ])
5 P(er € (boyeo) ) Abir,eo ] = ul (bo,co] X (biryeo])  (3.7)
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Therefore, by (3.5), (3.6) and (3.7),
E*(J.(B) — J3(B)) — 0 in probability
and with the Markov’s inequality, this completes the proof.
Proposition 3.3. For each fixed positive integer r > 1,
“ d .
= . — J = I “1/a in probability
kzz:l 616’ le( )) kz:l; Ekuékr / i)

in M,(R x (R"\{(0,0,...,0)})). That is, for every nonnegative integer value
z, and for all B € S,

P (J.*(B) = 2) — P(J(B) = z) — 0 in probability (3.8)

(r) _ (.*
where Z,”) = (e} _1,€5_g,- -1 E1_,)-

Proof. In order to prove (3.8), by Proposition 3.2, it suffices to show that

ZZI(EH,, aylere;) — >0 I(s,“,ék Ve in probability.

k=1i=1 k=1i=1

However, by the continuous mapping theorem, this is equivalent to show that

S
k=

*
! (5k+r"' s E€ht1s O

4, I 1a 3.9
Ek Z ek,ra- ~78k,1,6ka1/ ) ( )
in probability because the composition of the following two continuous map-
pings,

fjf
k=1

—1/a
(Ekrs€kroty- - er1, 6L, 7)

(Zl(skrﬁkr—”a S ZI(Ekh‘SkF_l/a ))

r

— ZZI(EM,51¢P_1/Q )

k=1i=1

is itself a continuous mapping from M,(R x R x - -+ x R x R\{0}) into M, (R x
(R"\{(0,0,...,0)})). Also, by using Laplace functional of point process,
which is defined as U,(f) = E{exp{—v(f)}} = E {exp {— [ f(z)v(dz,w)}}
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where v is a point process, f € C4(B) and C;(B) is the space of non-
negative continuous functions B — R, with compact support, to show (3.9)
is equivalent to prove that

E* {eXP{ —Zf(E;+r’€;+r—l"“’5k+l’a’ 15;) } }
- {GXP{ Zf(fkr,fkr 1,--',5k,la6kF;1/a)}}‘

— 0 in probabzlzty (3.10)

for all f € C%(B). Here, by the results of Lemma 2.1, Lemma 2.2 and the
argument in Proposition 3.6 of Kang (1995), it is not too difficult to prove
(3.10). So, we will omit the proof for the sake of brevity and this completes
the proof of Proposition 3.3. See Kang (1995) for the details.

We now use the result of Proposition 3.3 to obtain some results on the
weak convergence of a point process based on {X;}. The continuous mapping
theorem is exceedingly useful to get this result. We begin with a lemma which
parallels Lemma 2.3 in Davis and Resnick (1985).

Lemma 3.4. For any 6 > 0,

Zﬂjst J

m— 00

hm limsup P* [ a-! m
P m 1<t<m

) = 0 in probability.
Proof. First, note that if 1 < ¢ < r then,

p* (a;l Imax ZB’Et iy ) =0 a.s.

because lXt* - E;;é ﬁie:_j | 0 for 1 <t < r (notice that e*; = 0 for
7>0). If r <t <m, then |Xt* - ;;(1, o I = | B; E;;lr Bi”e;_j I So,

max, cicm | X7 = 2525 Biei; | < (18.17/(1 = 1Bu]) ) maxigio lef]. Thus,

by the convexity argument, for any § > 0,

r—1
~S"Bier ;| > 6
j=0

1<t<m

p* (a;1 max

m & A 1—|;§n|> m & ( 1— |8
— 1 € > Ay 6 ——— - — 1 |e|>am5—
n§ (' | nZ ‘ 18I"

|Ba "

)
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m 1—|B|)
+— Il|e] > am 6 —— |-

Here, by (2. 8) (2.11) and usmg the same argument as in the proof of Lemma
2.2 and the fact that ﬂn 22, 8, we can obtain that

r—1 .
~SN Bler | > 6
j=0

<6 ( ! ‘;‘Irm ) >- in probability
lim <5 <1_|ﬂl>>_a
T 00 ‘B'T

since |8] < 1 and 1 < a < 2. This completes the proof.

3

m 00 1<t<m

limsup P* (a,‘nl max

and

The following is the main result of this paper which is about the weak
convergence of a point process based on the bootstrap random variables { X} }.

Theorem 3.5. Suppose {X;} is the process given by (1.7). Then,

I/ v~y — I Ve s in probabilit
kiz:l (Ek’alek-—l ) ;; (Ek,i,ékl—‘k 1 /Bz——l ) pro vty

.

in M,(R x R\{0}).

Proof. From Proposition 3.3, we have that for any fixed positive integer
r>1,
™ 00

d :
E — I o babilit
G ;IZ ) i (era bl V%) o proRaTETy

in M,,(R x (R"\{(0,0,...,0)})). Here, we note that the map
( Vk—1;Vk-2s -+ s Vk—r ) - Z CiVg—i

induce a continuous map from M,(R x (R"\{(0,0,...,0)})) — M,(R x
R\{0}). So, by Theorem 5.5 in Billingsley (1968), we can say that

43

I, ., _ e 4, I “1/a i in probability
k; (Ek’a’ml El lﬁ 16k 1 ;]; (sk,i?ékrk / ﬂ 1)

(3.11)
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in M,(R x R\{0}). Also, as r — oo

T .4}

I a g — I -1/ ;i 312
< (era, 66T, 761 2.2 (CFRS Wby ) (8.12)

i=1 k= i=1k=1

pointwise. Thus by (3.11), (3.12) and the argument in Proposition 3.8 of Kang
(1995), it suffices to show that for each n > 0, and for f € C;} (R x R\{0}),

S fehanxi) - 3 fee ;IZﬁ’ e )| s n)
k=1 k=1

=0 in probabzlzty. (3.13)

lim limsup P* (
T - 00 m-— oo

The proof of (3.13) is not too difficult when we follow the idea of Theorem
2.4 in Davis and Resnick (1985) and use the results of Lemma 3.4. Hence,

the proof will be omitted for brevity and this completes the proof of Theorem
3.5.

Corollary 3.6. For all non-negative continuous functions f on R x R\{0}
with compact support,

Z f( 51:,@;11)(1:_1) -4 ZZ f(eri 6l “l/a - 1) in probability.
k=1 i=1 k=1

Proof. This follows from Theorem 3.5 and Theorem 2.1 in Billingsley (1968).

Remark. As an application of the above corollary, Davis, Knight and Liu
(1992) used the following function; f(z,y) = f(z,y)I(|z| £ M)I(|y| > §) for
any M > 0 and § > 0 to show the existence of the limiting distribution for
the LAD estimators of AR(1) processes with infinite variance.

4. CONCLUDING REMARKS

In this study, we obtained a bunch of point process convergence results
which are related to the bootstrap of LAD estimators. An exceedingly useful
result of these point process techniques is Corollary 3.6 and this corollary
holds for any point process results which are related to not only LAD es-
timators but also various functionals of observations with regularly varying
error terms. In fact, by using the point process techniques, Davis and Resnick
(1985) obtained the weak limit behavior of various functionals of observations
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{X, ,t > 1} such as partial sums, sample covariance functions and sample
correlation functions under the conditions that {X, = Y0z, t 2 1}

and as usual {Z,} satisfies (1.2) and (1.3) with 0 < o < 2 and 332, le;° < o0
for some § < « , 6§ < 1. Here, note that the conditions on a real sequence
{¢; , j > 0} are always satisfied for the stationary autoregressive processes.
Therefore, since the stationary autoregressive processes can be expressed by
moving average processes, it is not difficult to show that the bootstrap proce-
dure is asymptotically valid to approximate the weak limit behavior of various
functionals of observations of stationary ARMA processes with infinite vari-
ance when we follow the ideas of Davis and Resnick (1985) and apply the

arguments used in this paper.
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