• Title/Summary/Keyword: L.plantarum

Search Result 575, Processing Time 0.034 seconds

Radical-Scavenging Activities of Fermented Cactus Cladodes (Opuntia humifusa Raf.) (천년초 발효물의 라디칼 소거능)

  • Kim, Joo-Sung
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • The aim of this work was to select suitable fermentation treatments for the efficient bioconversion of cactus (Opuntia humifusa Raf.) bioactive components with an improved radical scavenging activity for use as a nutraceutical. To obtain microorganisms for the microbial conversion of cactus, Leuconostoc mesenteroides ATCC8294, Lactobacillus plantarum KCTC 3099, Lactobacillus plantarum KERI 236 and Monascus pilosus KCCM 60029 (ATCC 22080) were used for fermentation. Fermentation by Lac. plantarum KCTC 3099 was the most effective at scavenging 1,1-diphenyl-2-picrylhydrazyl hydrate (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and reducing iron (III). In particular, uronic acid levels showed a remarkable increase in fermentation. The polyphenol and quercetin content of the fermented cactus showed large increases from $108.65{\mu}g/mL$ and $2.71{\mu}g/mL$ to $227.83{\mu}g/mL$ and $9.73{\mu}g/mL$, respectively, showing a maximum level at 36 h of fermentation with Lac. plantarum KCTC 3099. Thus, cactus fermentation with Lac. plantarum is an useful process for the enhancement of antioxidant contents and activity of fresh cactus.

Effect of Lactic acid bacteria and Enzyme Supplementation on Fermentative Patterns of Ensiling Silages, Their In vitro Ruminal Fermentation, and Digestibility (젖산균과 효소제 처리에 의한 동계사료작물 발효성상, In vitro 반추위 발효 및 소화율에 미치는 영향 연구)

  • Lee, A-Leum;Shin, Su-Jin;Yang, Jinho;Cho, Sangbuem;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed.

Effect of Probiotics-Fermented Samjunghwan on Differentiation in 3T3-L1 Preadipocytes (3T3-L1 전지방세포에서 발효 삼정환의 지방 분화 억제 효과)

  • Song, Mi-Young;Bose, Shambhunath;Kim, Ho-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Samjunghwan (SJH) was fermented using five different probiotic bacterial strains (Lactobacillus plantarum, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillus acidophilus or Bifidobacterium longum) separately. We examined the inhibition of preadipocyte differentiation through Oil Red O staining and analyzed the expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EPB{\alpha}$), peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), uncoupling protein (UCP)-2, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase which are adipogenic transcription factors. Both Lactobacillus plantarum and Enterococcus faecium-fermented SJH reduced Oil Red O dye staining compared with the same dose of non-fermented SJH. Only Lactobacillus plantarum-fermented SJH inhibited all adipogenic transcription factors and showed the best down-regulation of $PPAR{\gamma}$, UCP-2, and HMG-CoA reductase compared with the same dose of non-fermented SJH. The effect of SJH on the inhibition of preadipocyte differentiation was more prominent from the fermented SJH. Lactobacillus plantarum-fermented SJH, in particular, blocks the expression of $PPAR{\gamma}$, UCP-2, HMG-CoA reductase.

Optimization of Culture Condition for Enhancing the Probiotics Functions (프로바이오틱스의 기능성 향상을 위한 배양법)

  • Chang, Bo Yoon;Han, Ji Hye;Cha, Bum-Suk;Ann, Sung-Ho;Kim, Sung Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • The functions of probiotics, particularly Lactic acid bacteria, have been studied in a range of human diseases, including cancer, infectious diseases, gastrointestinal disorders, and allergies. Among the many benefits associated with the consumption of probiotics, modulation of immune activity has received the most attention. This study aimed at investigating the improved immune stimulatory and stability of L. plantarum when cultivated on modified basal media supplemented with the Undaria pinnatifida co-cultured with L. plantarum. An in vitro test showed that U. pinnatifida media cultured L. plantarum is strong enough to survive in the gastric juice (gastric and bile acid). Mouse macrophage-derived cell lines RAW 264.7 was used to measured immune stimulating activity of L. plantarum. When U. pinnatifida media cultured by L. plantarum was NO and $TNF-{\alpha}$ production is significantly increased compared to basal media cultured L. plantarum. These results show that U. pinnatifida could be applied for a component for cultivation of L. plantarum. This optimized U. pinnatifida medium can be used the improving of stability and immune function on production of probiotics.

Potential Probiotic Characterization of Lactobacillus plantarum Strains Isolated from Inner Mongolia "Hurood" Cheese

  • Zhang, Jian;Zhang, Xue;Zhang, Li;Zhao, Yujuan;Niu, Chunhua;Yang, Zhennai;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.225-235
    • /
    • 2014
  • Total 121 lactic acid bacteria were isolated from homemade Inner Mongolia extra hard Hurood cheese. Seven of these strains, identified as Lactobacillus plantarum, were studied for probiotic characteristics. All seven strains survived at pH 3.0 for 3 h, or in the presence of oxgall at 0.3% or 0.6% for 4 h, but their viabilities were affected to different extents at pH 2.0 for 3 h. Strains C37 and C51 showed better adherence to Caco-2 cells, and higher hydrophobicity. The seven L. plantarum strains were different in in vitro free radical scavenging activities and cholesterol-reducing ability. In vivo evaluation of the influence of L. plantarum C37 on the intestinal flora in a mouse model showed strain C37 could increase the viable counts of lactobacilli in feces of mice and decrease the viable counts of enterococci. When L. plantarum C37 was used to prepare probiotic Hurood cheese, it was able to maintain high viable counts (>7.8 log CFU/g) during the whole storage period, but the composition of the cheese was not changed. These results indicate that L. plantarum C37 could be considered as a promising probiotic strain.

Anti-obesity Effect of Yogurt Fermented by Lactobacillus plantarum Q180 in Diet-induced Obese Rats

  • Park, Sun-Young;Seong, Ki-Seung;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • This study aimed to investigate the anti-obesity effects of yogurt fermented by Lactobacillus plantarum Q180 in diet-induced obese rats. To examine the effects, male Sprague-Dawley rats were fed on six different diets, as follows: Group A was fed an ND and orally administrated saline solution; Group B, an HFD and orally administrated saline solution; Group C, an HFD and orally administrated yogurt fermented by ABT-3 and L. plantarum Q180; Group D, an HFD and orally administrated yogurt with added Garcinia cambogia extract, fermented by ABT-3 and L. plantarum Q180; Group E, an HFD and orally administrated yogurt fermented by L. plantarum Q180; and Group F, an HFD and orally administrated yogurt with added Garcinia cambogia extract, fermented by L. plantarum Q180 for eight weeks. After eight weeks, the rate of increase in bodyweight was 5.14%, 6.5%, 3.35% and 10.81% lower in groups C, D, E and F, respectively, compared with group B; the epididymal fat weight of groups E and F was significantly lower than that of group B; and the level of triglyceride and leptin was significantly reduced in groups C, D, E and F compared to group B. In addition, the level of AST was reduced in group C compared to the other groups. To examine the effects of yogurt on the reduction of adipocyte size, the adipocyte sizes were measured. The number of large-size adipose tissue was less distributed in groups A, C, D, E and F than in group B.

Characterization and Action Mode of Anti-Complementary Substance Prepared from Lactobacillus plantarum (Lactobacillus plantarum 균체 중 항보체 활성물질의 특성과 작용양식)

  • Kim, Jang-Hyun;Shin, Kwang-Soon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.290-295
    • /
    • 2002
  • Among 12 lactic acid bacteria examined for their abilities to activate the complement system by hemolytic complement assay $(TCH_{50})$, Lactobacillus plantarum previously isolated from Kimchi showed high anti-complementary activity. The anti-complementary activity of the cell wall fraction of L. plantarum was more potent than that of the cytosol fraction, and both activities showed dose dependency. These high activities of the cytosol and the cell wall fractions were relatively resistant to the digestion with pronase, but sharply decreased after the treatment of $NaIO_4$. These results suggested that the complement activation by the cytosol and the cell wall fractions was mainly due to their polysaccharides. By the cross-immunoelectrophoresis using anti-human C3, the C3 activation products from both fractions were identified in $Ca^{++}$-free condition. Anti-complementary activity $(ITCH_{50})$ of the cell wall fraction was retained under the same condition, whereas that of the cytosol fraction was reduced considerably. From these results, it was inferred that the mode of complement activation by the cell wall fraction was mainly via alternative pathway, and that of the cytosol fraction was via both alternative and classical pathways.

Inactivation of Lactobacillus plantarum by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장 처리에 의한 Lactobacillus plantarum의 불활성화)

  • Shin, Hae-Hun;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1175-1183
    • /
    • 1997
  • Lethal effects of high voltage pulsed electric fields (PEF) on suspensions of Lactobacillus plantarum cells in phosphate buffer solution were examined by using continuous recycle treatment system. Critical electric field strength and treatment time needed for inactivation of L. plantarum were 13.6 kV/cm and $16.1\;{\mu}s$ at room temperature, respectively. As decrease in frequency (decreasing pulse number), the degree of inactivation of L. plantarum was increased. A 2.5 log reduction in microbial population could be achieved with an electric field strength of 80 kV/cm, 300 Hz frequency and $2000\;{\mu}s$ treatment time. Survivability was decreased with increase in total treatment time (cycle number) and frequency at the same cycle number. As sterilization model of continuous recycle PEF treatment, $logS=-N_m\;log\;m+B$ and $N_m=k_1\;P_n+k_2$ were established. This model was very well fitted to tile empirical data. The rate of inactivation increased with increase in the processing temperature. The maximum reduction in survivability (5.6 log reduction) was obtained with 80 kV/cm electric field strength at $50^{\circ}C$ for $1000\;{\mu}s$ treatment.

  • PDF

Effect of Addition of Lactic Acid Bacteria on Fermentation Quality of Rye Silage (Lactobacillus plantarum 첨가가 호밀 사일리지의 발효 품질에 미치는 영향)

  • Choi, Ki Choon;Ilavenil, Soundarrajan;Arasu, Mariadhas Valan;Park, Hyung-Su;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2015
  • This study was conducted to investigate the effect of novel Lactobacillus plantarum KCC-10 and KCC-19 on the quality and fermentation characterization of rye silages. The study was conducted at the National Institute of Animal Science, Cheonan province in Korea and consisted of three treatments: control without lactic acid bacteria, treatment with L. plantarum KCC-10 and treatment with L. plantarum KCC-19. The amounts of acid detergent fiber and neutral detergent fiber as well as the in vitro dry matter digestibility in KCC-10 and KCC-19 were similar to the control. The pH of rye silage in L. plantarum KCC-10 and KCC-19 treatments decreased compared to the control (p<0.05). The amount of lactic acid in L. plantarum KCC-10 and KCC-19 treatments increased (p<0.05), but the amounts of acetic acid and butyric acid in KCC-10 and KCC-19 treatments decreased (p<0.05). In addition, the number of lactic acid bacteria in L. plantarum KCC-10 and KCC-19 treatments increased compared to the control (p<0.05). Therefore, we suggest that rye silage was improved by the addition of L. plantarum KCC-10 and KCC-19.

Functional evaluation of sourdough containing lactic acid bacteria isolated from sliced radish kimchi (깍두기로부터 분리된 유산균으로 제조한 사워도우의 기능성 평가)

  • Lim, Eun-Seo;Kim, Young-Mog;Lee, Eun-Woo
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.180-192
    • /
    • 2017
  • The purpose of this study is to investigate the antioxidative and antimicrobial activities of sourdough fermented with the lactic acid bacteria (LAB) isolated from sliced radish kimchi. According to 16S rRNA gene sequence analysis, the isolated lactic acid bacteria were categorized as Leuconostoc dextranicum SRK03, Lactobacillus brevis SRK15, Pediococcus halophilus SRK22, Lactobacillus acidophilus SRK30, Lactobacillus plantarum SRK38, Leuconostoc citreum SRK 42, and Lactobacillus delbrueckii SRK60 with sequence similarity of 99%. After fermentation with L. dextranicum SRK03, L. acidophilus SRK30, L. plantarum SRK38 or L. delbrueckii SRK60 and Saccharomyces cerevisiae KCTC 7246 at $30^{\circ}C$ for 24 h LAB and yeast in sourdough were present at levels of $10^9$ and $10^7CFU/g$, respectively. In particular, the titratable acidity and ethanol and exopolysaccharide contents of sourdough fermented with L. dextranicum SRK03 were also significantly (P < 0.05) higher than those of sourdough fermented with L. acidophilus SRK30, L. plantarum SRK38, or L. delbrueckii SRK60. The sourdough fermented with L. dextranicum SRK03 and L. acidophilus SRK30 showed not only good DPPH radical-scavenging capacity but anti-lipid peroxidation activity. In addition, the viable counts of Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 in sourdough during storage for 5 days at $25^{\circ}C$ were significantly (P < 0.05) lower than those of pathogenic bacteria in the control group due to the organic acids and bacteriocin produced by L. acidophilus SRK30 strain.